R. Pellikaan (Arithmetic, Geometry and Coding Theory, Vol. 4, Walter de Gruyter, Berlin, 1996, pp. 175–184) a introduit une fonction zêta Z(t,u) en deux variables pour une courbe définie sur un corps fini
R. Pellikaan (Arithmetic, Geometry and Coding Theory, Vol. 4, Walter de Gruyter, Berlin, 1996, pp. 175–184) introduced a two variable zeta-function Z(t,u) for a curve over a finite field
Accepté le :
Publié le :
@article{CRMATH_2003__336_4_289_0, author = {Naumann, Niko}, title = {On the irreducibility of the two variable zeta-function for curves over finite fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {289--292}, publisher = {Elsevier}, volume = {336}, number = {4}, year = {2003}, doi = {10.1016/S1631-073X(03)00039-6}, language = {en}, url = {https://www.numdam.org/articles/10.1016/S1631-073X(03)00039-6/} }
TY - JOUR AU - Naumann, Niko TI - On the irreducibility of the two variable zeta-function for curves over finite fields JO - Comptes Rendus. Mathématique PY - 2003 SP - 289 EP - 292 VL - 336 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S1631-073X(03)00039-6/ DO - 10.1016/S1631-073X(03)00039-6 LA - en ID - CRMATH_2003__336_4_289_0 ER -
%0 Journal Article %A Naumann, Niko %T On the irreducibility of the two variable zeta-function for curves over finite fields %J Comptes Rendus. Mathématique %D 2003 %P 289-292 %V 336 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/S1631-073X(03)00039-6/ %R 10.1016/S1631-073X(03)00039-6 %G en %F CRMATH_2003__336_4_289_0
Naumann, Niko. On the irreducibility of the two variable zeta-function for curves over finite fields. Comptes Rendus. Mathématique, Tome 336 (2003) no. 4, pp. 289-292. doi : 10.1016/S1631-073X(03)00039-6. https://www.numdam.org/articles/10.1016/S1631-073X(03)00039-6/
[1] C. Deninger, Two-variable zeta functions and regularized products, Preprint, 2002
[2] Commutative Algebra with a View Towards Algebraic Geometry, Graduate Texts in Math., 150, Springer, New York, 1995
[3] Effectivity of Arakelov divisors and the theta divisor of a number field, Selecta Math. (N.S.), Volume 6 (2000) no. 4, pp. 377-398
[4] Algebraic Geometry, Graduate Texts in Math., 52, Springer, New York, 1977
[5] J. Lagarias, E. Rains, On a two-variable zeta function for number fields, , v5, 7 July 2002 | arXiv
[6] On special divisors and the two variable zeta function of algebraic curves over finite fields, Arithmetic, Geometry and Coding Theory, Vol. 4, Luminy, 1993, W. de Gruyter, Berlin, 1996, pp. 175-184
[7] Endomorphisms of Abelian varieties over finite fields, Invent. Math., Volume 2 (1966), pp. 143-144
Cité par Sources :