Partial Differential Equations
A variant of Poincaré's inequality
[Une variante de l'inégalité de Poincaré]
Comptes Rendus. Mathématique, Tome 337 (2003) no. 4, pp. 253-257.

Soit Ω N ,N2, un domaine lipschitzien borné. Étant donnée une suite de fonctions radiales positives (ρ n )L 1 ( N ) qui converge vers la masse de Dirac δ0 on montre qu'il existe C>0 et n0⩾1 tels que

Ωf- Ωf p C Ω Ω|f(x)-f(y)| p |x-y| p ρ n (|x-y|)dxdyfL p (Ω)nn 0 .
Cette estimation a été motivée par un travail récent de Bourgain, Brezis et Mironescu (dans : Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 439–455). En prenant la limite dans (2) lorsque n→∞, on retrouve l'inégalité de Poincaré. On généralise aussi un théorème de compacité de Bourgain, Brezis et Mironescu.

We show that if Ω N ,N2, is a bounded Lipschitz domain and (ρ n )L 1 ( N ) is a sequence of nonnegative radial functions weakly converging to δ0 then there exist C>0 and n0⩾1 such that

Ωf- Ωf p C Ω Ω|f(x)-f(y)| p |x-y| p ρ n (|x-y|)dxdyfL p (Ω)nn 0 .
The above estimate was suggested by some recent work of Bourgain, Brezis and Mironescu (in: Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 439–455). As n→∞ in (1) we recover Poincaré's inequality. We also extend a compactness result of Bourgain, Brezis and Mironescu.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-073X(03)00313-3
Ponce, Augusto C. 1, 2

1 Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, BC 187, 4, pl. Jussieu, 75252 Paris cedex 05, France
2 Rutgers University, Dept. of Math., Hill Center, Busch Campus, 110 Frelinghuysen Rd, Piscataway, NJ 08854, USA
@article{CRMATH_2003__337_4_253_0,
     author = {Ponce, Augusto C.},
     title = {A variant of {Poincar\'e's} inequality},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {253--257},
     publisher = {Elsevier},
     volume = {337},
     number = {4},
     year = {2003},
     doi = {10.1016/S1631-073X(03)00313-3},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S1631-073X(03)00313-3/}
}
TY  - JOUR
AU  - Ponce, Augusto C.
TI  - A variant of Poincaré's inequality
JO  - Comptes Rendus. Mathématique
PY  - 2003
SP  - 253
EP  - 257
VL  - 337
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S1631-073X(03)00313-3/
DO  - 10.1016/S1631-073X(03)00313-3
LA  - en
ID  - CRMATH_2003__337_4_253_0
ER  - 
%0 Journal Article
%A Ponce, Augusto C.
%T A variant of Poincaré's inequality
%J Comptes Rendus. Mathématique
%D 2003
%P 253-257
%V 337
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S1631-073X(03)00313-3/
%R 10.1016/S1631-073X(03)00313-3
%G en
%F CRMATH_2003__337_4_253_0
Ponce, Augusto C. A variant of Poincaré's inequality. Comptes Rendus. Mathématique, Tome 337 (2003) no. 4, pp. 253-257. doi : 10.1016/S1631-073X(03)00313-3. http://archive.numdam.org/articles/10.1016/S1631-073X(03)00313-3/

[1] J. Bourgain, H. Brezis, personal communication

[2] Bourgain, J.; Brezis, H.; Mironescu, P. Another look at Sobolev spaces (Menaldi, J.L.; Rofman, E.; Sulem, A., eds.), Optimal Control and Partial Differential Equations, IOS Press, 2001, pp. 439-455 (A volume in honour of A. Benssoussan's 60th birthday)

[3] Bourgain, J.; Brezis, H.; Mironescu, P. Limiting embedding theorems for Ws,p when s↑1 and applications, J. Anal. Math., Volume 87 (2002), pp. 77-101 (Dedicated to the memory of Thomas H. Wolff)

[4] J. Bourgain, H. Brezis, P. Mironescu, H1/2 maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation, in press

[5] Brezis, H. How to recognize constant functions. Connections with Sobolev spaces, Uspekhi Mat. Nauk, Volume 57 (2002), pp. 59-74 (in Russian). English version: Russian Math. Surveys, 57, 2002, pp. 693-708 Volume in honor of M. Vishik

[6] Maz'ya, V.; Shaposhnikova, T. On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002), pp. 230-238 (Erratum J. Funct. Anal., 201, 2003, pp. 298-300)

[7] A.C. Ponce, An estimate in the spirit of Poincaré's inequality, J. Eur. Math. Soc., in press

Cité par Sources :