@article{AIHPB_2005__41_3_375_0, author = {Hudson, R. L.}, title = {It\^o calculus and quantisation of {Lie} bialgebras}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {375--390}, publisher = {Elsevier}, volume = {41}, number = {3}, year = {2005}, doi = {10.1016/j.anihpb.2004.09.008}, mrnumber = {2139025}, zbl = {1074.81043}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2004.09.008/} }
TY - JOUR AU - Hudson, R. L. TI - Itô calculus and quantisation of Lie bialgebras JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2005 SP - 375 EP - 390 VL - 41 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2004.09.008/ DO - 10.1016/j.anihpb.2004.09.008 LA - en ID - AIHPB_2005__41_3_375_0 ER -
%0 Journal Article %A Hudson, R. L. %T Itô calculus and quantisation of Lie bialgebras %J Annales de l'I.H.P. Probabilités et statistiques %D 2005 %P 375-390 %V 41 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2004.09.008/ %R 10.1016/j.anihpb.2004.09.008 %G en %F AIHPB_2005__41_3_375_0
Hudson, R. L. Itô calculus and quantisation of Lie bialgebras. Annales de l'I.H.P. Probabilités et statistiques, Volume 41 (2005) no. 3, pp. 375-390. doi : 10.1016/j.anihpb.2004.09.008. http://archive.numdam.org/articles/10.1016/j.anihpb.2004.09.008/
[1] Quantum stochastic processes, Publ. RIMS Kyoto 18 (1982) 97-133. | MR | Zbl
, , ,[2] Quantisation of Lie bialgebras and shuffle algebras of Lie algebras, Selecta Math. (N.S.) 7 (2001) 321-407. | MR | Zbl
,[3] Quantization of Lie bialgebras, I, Selecta Math. (NS.) 2 (1966) 1-41. | MR | Zbl
, ,[4] Calculus in enveloping algebras, J. London Math. Soc. (2) 65 (2002) 361-380. | MR | Zbl
,[5] Quantum Itô's formula and stochastic evolutions, Commun. Math. Phys. 93 (1984) 301-323. | MR | Zbl
, ,[6] The method of formal power series in quantum stochastic calculus, IDAQP 3 (2000) 387-401. | MR | Zbl
, , ,[7] Double product integrals and Enriquez quantisation of Lie bialgebras I: the quasitriangularity relations, J. Math. Phys. 45 (2004) 2090-2105. | MR | Zbl
, ,[8] R.L. Hudson, S. Pulmannová, Double product integrals and Enriquez quantisation of Lie bialgebras II: the quantum Yang-Baxter equation, Lett. Math. Phys., submitted for publication. | MR | Zbl
[9] Symmetrized double quantum stochastic product integrals, J. Math. Phys. 41 (2000) 8249-8262. | MR | Zbl
, ,[10] Quantum Probability for Probabilists, Lecture Notes in Math., vol. 1538, Springer, 1993. | MR | Zbl
,[11] Current commutation relations, continuous tensor products and infinitely divisible group representations, Rend. Sc. Inst. Fisica E. Fermi XI (1969) 247-263.
,Cited by Sources: