@article{AIHPB_2007__43_4_375_0, author = {Danilenko, Alexandre I. and Silva, Cesar E.}, title = {Mixing rank-one actions of locally compact abelian groups}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {375--398}, publisher = {Elsevier}, volume = {43}, number = {4}, year = {2007}, doi = {10.1016/j.anihpb.2006.05.002}, mrnumber = {2329508}, zbl = {1126.37004}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2006.05.002/} }
TY - JOUR AU - Danilenko, Alexandre I. AU - Silva, Cesar E. TI - Mixing rank-one actions of locally compact abelian groups JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2007 SP - 375 EP - 398 VL - 43 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2006.05.002/ DO - 10.1016/j.anihpb.2006.05.002 LA - en ID - AIHPB_2007__43_4_375_0 ER -
%0 Journal Article %A Danilenko, Alexandre I. %A Silva, Cesar E. %T Mixing rank-one actions of locally compact abelian groups %J Annales de l'I.H.P. Probabilités et statistiques %D 2007 %P 375-398 %V 43 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2006.05.002/ %R 10.1016/j.anihpb.2006.05.002 %G en %F AIHPB_2007__43_4_375_0
Danilenko, Alexandre I.; Silva, Cesar E. Mixing rank-one actions of locally compact abelian groups. Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 4, pp. 375-398. doi : 10.1016/j.anihpb.2006.05.002. http://archive.numdam.org/articles/10.1016/j.anihpb.2006.05.002/
[1] Smorodinsky's conjecture on rank one systems, Proc. Amer. Math. Soc. 126 (1998) 739-744. | MR | Zbl
,[2] T.M. Adams, N.A. Friedman, Staircase mixing, preprint, 1992.
[3] -staircase actions, Ergodic Theory Dynam. Systems 19 (1999) 837-850. | MR | Zbl
, ,[4] Ergodic Ramsey theory-an update, in: Ergodic Theory of Actions, Warwick, 1993-1994, London Math. Soc. Lecture Note Ser., vol. 228, Cambridge Univ. Press, Cambridge, 1996, pp. 1-61. | Zbl
,[5] Mixing on a class of rank-one transformations, Ergodic Theory Dynam. Systems 24 (2004) 407-440. | MR | Zbl
, ,[6] Funny rank one weak mixing for nonsingular Abelian actions, Israel J. Math. 121 (2001) 29-54. | MR | Zbl
,[7] Infinite rank one actions and nonsingular Chacon transformations, Illinois J. Math. 48 (2004) 769-786. | MR | Zbl
,[8] Mixing rank-one actions for infinite sums of finite groups, Israel J. Math. 156 (2006) 341-358. | MR | Zbl
,[9] Multiple and polynomial recurrence for Abelian actions in infinite measure, J. London Math. Soc. (2) 69 (2004) 183-200. | MR | Zbl
, ,[10] A simple map with no prime factors, Israel J. Math. 104 (1998) 301-320. | MR | Zbl
,[11] Multiple mixing rank one group actions, Canad. J. Math. 52 (2000) 332-347. | MR | Zbl
, ,[12] Rank one and mixing differentiable flows, Invent. Math. 160 (2005) 305-340. | MR | Zbl
,[13] A loosely Bernoulli counterexample machine, Israel J. Math. 112 (1999) 237-247. | MR | Zbl
,[14] Twofold mixing implies threefold mixing for rank one transformations, Ergodic Theory Dynam. Systems 4 (1984) 237-259. | MR | Zbl
,[15] Joining-rank and the structure of finite rank mixing transformations, J. Analyse Math. 51 (1988) 182-227. | MR | Zbl
,[16] Polynomial mappings of groups, Israel J. Math. 129 (2002) 29-60. | MR | Zbl
,[17] Rank-one group actions with simple mixing -subactions, New York J. Math. 10 (2004) 175-194. | MR | Zbl
,[18] On the root problem in ergodic theory, in: Proc. Sixth Berkeley Symp. Math. Stat. Prob. vol. II, Univ. California, Berkeley, CA, 1970/1971, Univ. of California Press, Berkeley, CA, 1972, pp. 347-356. | MR | Zbl
,[19] Stochastic constructions of flows of rank one, Mat. Sb. 192 (2001) 61-92. | MR | Zbl
,[20] The second centralizer of a Bernoulli shift is just its powers, Israel J. Math. 29 (1978) 167-178. | MR | Zbl
,[21] An example of a measure preserving map with minimal self-joinings, J. Analyse Math. 35 (1979) 97-122. | MR | Zbl
,[22] Mixing, rank and minimal self-joining of actions with invariant measure, Mat. Sb. 183 (1992) 133-160. | MR | Zbl
,[23] Joinings and multiple mixing of the actions of finite rank, Funktsional. Anal. i Prilozhen. 27 (1993) 63-78. | MR | Zbl
,[24] The Rokhlin problem on multiple mixing in the class of actions of positive local rank, Funktsional. Anal. i Prilozhen. 34 (2000) 90-93. | MR | Zbl
,Cited by Sources: