Large deviation principle of occupation measure for stochastic Burgers equation
Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 4, pp. 441-459.
@article{AIHPB_2007__43_4_441_0,
     author = {Gourcy, Mathieu},
     title = {Large deviation principle of occupation measure for stochastic {Burgers} equation},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {441--459},
     publisher = {Elsevier},
     volume = {43},
     number = {4},
     year = {2007},
     doi = {10.1016/j.anihpb.2006.07.003},
     mrnumber = {2329511},
     zbl = {1123.60016},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2006.07.003/}
}
TY  - JOUR
AU  - Gourcy, Mathieu
TI  - Large deviation principle of occupation measure for stochastic Burgers equation
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2007
SP  - 441
EP  - 459
VL  - 43
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpb.2006.07.003/
DO  - 10.1016/j.anihpb.2006.07.003
LA  - en
ID  - AIHPB_2007__43_4_441_0
ER  - 
%0 Journal Article
%A Gourcy, Mathieu
%T Large deviation principle of occupation measure for stochastic Burgers equation
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2007
%P 441-459
%V 43
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpb.2006.07.003/
%R 10.1016/j.anihpb.2006.07.003
%G en
%F AIHPB_2007__43_4_441_0
Gourcy, Mathieu. Large deviation principle of occupation measure for stochastic Burgers equation. Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 4, pp. 441-459. doi : 10.1016/j.anihpb.2006.07.003. http://archive.numdam.org/articles/10.1016/j.anihpb.2006.07.003/

[1] C. Cardon-Weber, Large deviations for a Burgers type SPDE, Stochastic Process. Appl. 84 (1999) 53-70. | MR | Zbl

[2] G. Da Prato, A. Debussche, Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton Jacobi equation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 9 (1998) 267-277. | MR | Zbl

[3] G. Da Prato, A. Debussche, Dynamic programming for the stochastic Burgers equation, Ann. Mat. Pura Appl. (IV) CLXXVIII (2000) 143-174. | MR | Zbl

[4] G. Da Prato, D. Gatarek, Stochastic Burgers equation with correlated noise, Stoch. Stoch. Rep. 52 (1995) 29-41. | MR | Zbl

[5] G. Da Prato, A. Debussche, R. Temam, Stochastic Burgers equation, Nonlinear Anal. 1 (1994) 389-402. | MR | Zbl

[6] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992. | MR | Zbl

[7] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, 1996. | MR | Zbl

[8] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, second ed., Springer-Verlag, 1998. | MR | Zbl

[9] A. Dermoune, Around the stochastic Burgers equation, Stoch. Anal. Appl. 15 (2) (1997) 295-311. | MR | Zbl

[10] J.D. Deuschel, D.W. Stroock, Large Deviations, Pure Appl. Math., vol. 137, Academic Press, San Diego, 1989. | MR | Zbl

[11] M.D. Donsker, S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time, I-IV, Comm. Pure Appl. Math. 28 (1975) 1-47, 279-301 (1975); 29, 389-461 (1976); 36, 183-212 (1983). | Zbl

[12] F. Flandoli, B. Maslowski, Ergodicity of the 2D Navier-Stokes equation under random perturbation, Comm. Math. Phys. 171 (1995) 119-141. | Zbl

[13] B. Goldys, B. Maslowski, Exponential ergodicity for stochastic burgers and 2D Navier-Stokes equation, J. Funct. Anal. 226 (1) (2005) 230-255. | Zbl

[14] S.P. Meyn, R.L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, 1993. | MR | Zbl

[15] E. Pardoux, Equations aux dérivées partielles stochastiques non linéaires monotones, Ph.D. thesis. Université Paris XI, 1975. | Zbl

[16] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, third ed., Springer-Verlag, 1999. | MR | Zbl

[17] B.L. Rozovski, Stochastic Evolution Systems: Linear Theory and Application to Non Linear Filtering, Kluver Academic, 1990. | Zbl

[18] E. Weinan, K. Khanin, A. Mazel, Ya. Sinai, Invariant measures for Burgers equation with stochastic forcing, Ann. of Math. 151 (2000) 877-960. | MR | Zbl

[19] L. Wu, Uniformly integrable operators and large deviations for Markov processes, J. Funct. Anal. 172 (2000) 301-376. | MR | Zbl

[20] L. Wu, Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems, Stochastic Proc. Appl. 91 (2001) 205-238. | MR | Zbl

[21] L. Wu, Essential spectral radius for Markov semigroups (I): discrete time case, Probab. Theory Related Fields 128 (2004) 255-321. | MR | Zbl

Cited by Sources: