@article{AIHPB_2007__43_5_509_0, author = {Van der Hofstad, Remco and den Hollander, Frank and Slade, Gordon}, title = {The survival probability for critical spread-out oriented percolation above $4+1$ dimensions. {II.} {Expansion}}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {509--570}, publisher = {Elsevier}, volume = {43}, number = {5}, year = {2007}, doi = {10.1016/j.anihpb.2006.09.002}, mrnumber = {2347096}, zbl = {1134.60063}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2006.09.002/} }
TY - JOUR AU - Van der Hofstad, Remco AU - den Hollander, Frank AU - Slade, Gordon TI - The survival probability for critical spread-out oriented percolation above $4+1$ dimensions. II. Expansion JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2007 SP - 509 EP - 570 VL - 43 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2006.09.002/ DO - 10.1016/j.anihpb.2006.09.002 LA - en ID - AIHPB_2007__43_5_509_0 ER -
%0 Journal Article %A Van der Hofstad, Remco %A den Hollander, Frank %A Slade, Gordon %T The survival probability for critical spread-out oriented percolation above $4+1$ dimensions. II. Expansion %J Annales de l'I.H.P. Probabilités et statistiques %D 2007 %P 509-570 %V 43 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2006.09.002/ %R 10.1016/j.anihpb.2006.09.002 %G en %F AIHPB_2007__43_5_509_0
Van der Hofstad, Remco; den Hollander, Frank; Slade, Gordon. The survival probability for critical spread-out oriented percolation above $4+1$ dimensions. II. Expansion. Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 5, pp. 509-570. doi : 10.1016/j.anihpb.2006.09.002. http://archive.numdam.org/articles/10.1016/j.anihpb.2006.09.002/
[1] Percolation critical exponents under the triangle condition, Ann. Probab. 19 (1991) 1520-1536. | MR | Zbl
, ,[2] The critical contact process dies out, Ann. Probab. 18 (1990) 1462-1482. | MR | Zbl
, ,[3] Percolation, second ed., Springer, Berlin, 1999. | MR | Zbl
,[4] Directed percolation and random walk, in: (Ed.), In and Out of Equilibrium, Birkhäuser, Boston, 2002, pp. 273-297. | MR | Zbl
, ,[5] Mean-field critical behaviour for percolation in high dimensions, Comm. Math. Phys. 128 (1990) 333-391. | MR | Zbl
, ,[6] The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents, J. Stat. Phys. 99 (2000) 1075-1168. | MR | Zbl
, ,[7] R. van der Hofstad, F. den Hollander, G. Slade, The survival probability for critical spread-out oriented percolation above dimensions. I. Induction. Preprint, 2005. Probab. Theory Related Fields, in press. | MR | Zbl
[8] Construction of the incipient infinite cluster for spread-out oriented percolation above dimensions, Comm. Math. Phys. 231 (2002) 435-461. | MR | Zbl
, , ,[9] Gaussian scaling for the critical spread-out contact process above the upper critical dimension, Electron. J. Probab. 9 (2004) 710-769. | MR | Zbl
, ,[10] Critical points for spread-out self-avoiding walk, percolation and the contact process, Probab. Theory Related Fields 132 (2005) 438-470. | MR | Zbl
, ,[11] R. van der Hofstad, A. Sakai, Convergence of the critical finite-range contact process to super-Brownian motion above the upper critical dimension. I. The higher-point functions, in preparation. | Zbl
[12] R. van der Hofstad, A. Sakai, Convergence of the critical finite-range contact process to super-Brownian motion above the upper critical dimension. II. The survival probability, in preparation.
[13] A generalised inductive approach to the lace expansion, Probab. Theory Related Fields 122 (2002) 389-430. | MR | Zbl
, ,[14] Convergence of critical oriented percolation to super-Brownian motion above dimensions, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 415-485. | EuDML | Numdam | MR | Zbl
, ,[15] The Self-Avoiding Walk, Birkhäuser, Boston, 1993. | MR | Zbl
, ,[16] Triangle condition for oriented percolation in high dimensions, Ann. Probab. 21 (1993) 1809-1844. | MR | Zbl
, ,[17] Mean-field critical behavior for the contact process, J. Stat. Phys. 104 (2001) 111-143. | MR | Zbl
,[18] The Lace Expansion and its Applications, Lecture Notes in Mathematics, vol. 1879, Springer, 2006, Ecole d'Eté Probabilit. Saint-Flour. | MR | Zbl
,Cited by Sources: