The survival probability for critical spread-out oriented percolation above 4+1 dimensions. II. Expansion
Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 5, pp. 509-570.
@article{AIHPB_2007__43_5_509_0,
     author = {Van der Hofstad, Remco and den Hollander, Frank and Slade, Gordon},
     title = {The survival probability for critical spread-out oriented percolation above $4+1$ dimensions. {II.} {Expansion}},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {509--570},
     publisher = {Elsevier},
     volume = {43},
     number = {5},
     year = {2007},
     doi = {10.1016/j.anihpb.2006.09.002},
     mrnumber = {2347096},
     zbl = {1134.60063},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2006.09.002/}
}
TY  - JOUR
AU  - Van der Hofstad, Remco
AU  - den Hollander, Frank
AU  - Slade, Gordon
TI  - The survival probability for critical spread-out oriented percolation above $4+1$ dimensions. II. Expansion
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2007
SP  - 509
EP  - 570
VL  - 43
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpb.2006.09.002/
DO  - 10.1016/j.anihpb.2006.09.002
LA  - en
ID  - AIHPB_2007__43_5_509_0
ER  - 
%0 Journal Article
%A Van der Hofstad, Remco
%A den Hollander, Frank
%A Slade, Gordon
%T The survival probability for critical spread-out oriented percolation above $4+1$ dimensions. II. Expansion
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2007
%P 509-570
%V 43
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpb.2006.09.002/
%R 10.1016/j.anihpb.2006.09.002
%G en
%F AIHPB_2007__43_5_509_0
Van der Hofstad, Remco; den Hollander, Frank; Slade, Gordon. The survival probability for critical spread-out oriented percolation above $4+1$ dimensions. II. Expansion. Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 5, pp. 509-570. doi : 10.1016/j.anihpb.2006.09.002. http://archive.numdam.org/articles/10.1016/j.anihpb.2006.09.002/

[1] D.J. Barsky, M. Aizenman, Percolation critical exponents under the triangle condition, Ann. Probab. 19 (1991) 1520-1536. | MR | Zbl

[2] C. Bezuidenhout, G. Grimmett, The critical contact process dies out, Ann. Probab. 18 (1990) 1462-1482. | MR | Zbl

[3] G. Grimmett, Percolation, second ed., Springer, Berlin, 1999. | MR | Zbl

[4] G. Grimmett, P. Hiemer, Directed percolation and random walk, in: Sidoravicius V. (Ed.), In and Out of Equilibrium, Birkhäuser, Boston, 2002, pp. 273-297. | MR | Zbl

[5] T. Hara, G. Slade, Mean-field critical behaviour for percolation in high dimensions, Comm. Math. Phys. 128 (1990) 333-391. | MR | Zbl

[6] T. Hara, G. Slade, The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents, J. Stat. Phys. 99 (2000) 1075-1168. | MR | Zbl

[7] R. van der Hofstad, F. den Hollander, G. Slade, The survival probability for critical spread-out oriented percolation above 4+1 dimensions. I. Induction. Preprint, 2005. Probab. Theory Related Fields, in press. | MR | Zbl

[8] R. Van Der Hofstad, F. Den Hollander, G. Slade, Construction of the incipient infinite cluster for spread-out oriented percolation above 4+1 dimensions, Comm. Math. Phys. 231 (2002) 435-461. | MR | Zbl

[9] R. Van Der Hofstad, A. Sakai, Gaussian scaling for the critical spread-out contact process above the upper critical dimension, Electron. J. Probab. 9 (2004) 710-769. | MR | Zbl

[10] R. Van Der Hofstad, A. Sakai, Critical points for spread-out self-avoiding walk, percolation and the contact process, Probab. Theory Related Fields 132 (2005) 438-470. | MR | Zbl

[11] R. van der Hofstad, A. Sakai, Convergence of the critical finite-range contact process to super-Brownian motion above the upper critical dimension. I. The higher-point functions, in preparation. | Zbl

[12] R. van der Hofstad, A. Sakai, Convergence of the critical finite-range contact process to super-Brownian motion above the upper critical dimension. II. The survival probability, in preparation.

[13] R. Van Der Hofstad, G. Slade, A generalised inductive approach to the lace expansion, Probab. Theory Related Fields 122 (2002) 389-430. | MR | Zbl

[14] R. Van Der Hofstad, G. Slade, Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimensions, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 415-485. | EuDML | Numdam | MR | Zbl

[15] N. Madras, G. Slade, The Self-Avoiding Walk, Birkhäuser, Boston, 1993. | MR | Zbl

[16] B.G. Nguyen, W.-S. Yang, Triangle condition for oriented percolation in high dimensions, Ann. Probab. 21 (1993) 1809-1844. | MR | Zbl

[17] A. Sakai, Mean-field critical behavior for the contact process, J. Stat. Phys. 104 (2001) 111-143. | MR | Zbl

[18] G. Slade, The Lace Expansion and its Applications, Lecture Notes in Mathematics, vol. 1879, Springer, 2006, Ecole d'Eté Probabilit. Saint-Flour. | MR | Zbl

Cited by Sources: