@article{AIHPB_2007__43_6_763_0, author = {Rodr{\'\i}guez Casal, Alberto}, title = {Set estimation under convexity type assumptions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {763--774}, publisher = {Elsevier}, volume = {43}, number = {6}, year = {2007}, doi = {10.1016/j.anihpb.2006.11.001}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpb.2006.11.001/} }
TY - JOUR AU - Rodríguez Casal, Alberto TI - Set estimation under convexity type assumptions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2007 SP - 763 EP - 774 VL - 43 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpb.2006.11.001/ DO - 10.1016/j.anihpb.2006.11.001 LA - en ID - AIHPB_2007__43_6_763_0 ER -
%0 Journal Article %A Rodríguez Casal, Alberto %T Set estimation under convexity type assumptions %J Annales de l'I.H.P. Probabilités et statistiques %D 2007 %P 763-774 %V 43 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpb.2006.11.001/ %R 10.1016/j.anihpb.2006.11.001 %G en %F AIHPB_2007__43_6_763_0
Rodríguez Casal, Alberto. Set estimation under convexity type assumptions. Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 6, pp. 763-774. doi : 10.1016/j.anihpb.2006.11.001. http://archive.numdam.org/articles/10.1016/j.anihpb.2006.11.001/
[1] On the estimation of a star-shaped set, Adv. Appl. Probab. 33 (2001) 1-10. | MR | Zbl
, ,[2] Set estimation and nonparametric detection, Canad. J. Statist. 28 (2000) 765-782. | MR | Zbl
, , ,[3] About the automatic detection of training sets for multispectral images classification, in: , , (Eds.), Advances in Data Science and Classification, Springer, Berlin, 1988, pp. 221-226.
, , ,[4] Cluster analysis: a further approach based on density estimation, Computational Statistics and Data Analysis 36 (2001) 441-459. | MR | Zbl
, , ,[5] Estimating the number of clusters, Canad. J. Statist. 28 (2000) 367-382. | MR | Zbl
, , ,[6] A plug-in approach to support estimation, Ann. Statist. 25 (1997) 2300-2312. | MR | Zbl
, ,[7] On boundary estimation, Adv. Appl. Probab. 36 (2004) 340-354. | MR | Zbl
, ,[8] Detection of abnormal behavior via nonparametric estimation of the support, SIAM J. Appl. Math. 38 (1980) 480-488. | MR | Zbl
, ,[9] Rates of convergence for random approximations of convex sets, Adv. Appl. Probab. 28 (1996) 384-393. | MR | Zbl
, ,[10] Measure, Topology and Fractal Geometry, Springer-Verlag, 1990. | MR | Zbl
,[11] Three dimensional alpha shapes, ACM Trans. Graph. 13 (1994) 43-72. | Zbl
, ,[12] Minimax Theory of Image Reconstruction, Springer-Verlag, 1993. | MR | Zbl
, ,[13] Vision, Freeman and Co, 1982.
,[14] Approximating the distribution of maximum likelihood contour estimators in two-region images, Scand. J. Statist. 21 (1994) 41-55. | MR | Zbl
, ,[15] Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, 1993. | Zbl
,[16] Image Analysis and Mathematical Morphology, Academic Press, 1982. | MR | Zbl
,[17] Optimal aggregation of classifiers in statistical learning, Ann. Statist. 1 (2004) 135-166. | MR | Zbl
,[18] Granulometric smoothing, Ann. Statist. 25 (1997) 2273-2299. | MR | Zbl
,[19] On a generalization of Blaschke's rolling theorem and the smoothing of surfaces, Math. Methods Appl. Sci. 22 (1999) 301-316. | MR | Zbl
,[20] Stochastic geometry, in: Handbook of Convex Geometry, vol. B, Elsevier, Amsterdam, 1993, pp. 1391-1438. | MR | Zbl
, ,Cited by Sources: