@article{AIHPC_2005__22_4_485_0, author = {Palis, J.}, title = {A global perspective for non-conservative dynamics}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {485--507}, publisher = {Elsevier}, volume = {22}, number = {4}, year = {2005}, doi = {10.1016/j.anihpc.2005.01.001}, mrnumber = {2145722}, zbl = {02191851}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2005.01.001/} }
TY - JOUR AU - Palis, J. TI - A global perspective for non-conservative dynamics JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 485 EP - 507 VL - 22 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2005.01.001/ DO - 10.1016/j.anihpc.2005.01.001 LA - en ID - AIHPC_2005__22_4_485_0 ER -
%0 Journal Article %A Palis, J. %T A global perspective for non-conservative dynamics %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 485-507 %V 22 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2005.01.001/ %R 10.1016/j.anihpc.2005.01.001 %G en %F AIHPC_2005__22_4_485_0
Palis, J. A global perspective for non-conservative dynamics. Annales de l'I.H.P. Analyse non linéaire, Volume 22 (2005) no. 4, pp. 485-507. doi : 10.1016/j.anihpc.2005.01.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2005.01.001/
[1] Nongenericity of Ω-stability, in: Global Analysis, Berkeley 1968, Proc. Sympos. Pure Math., vol. XIV, Amer. Math. Soc., 1970. | Zbl
, ,[2] On the appearance and structure of the Lorenz attractor, Dokl. Acad. Sci. USSR 234 (1977) 336-339. | MR | Zbl
, , ,[3] The accessible transitions from Morse-Smale systems to systems with several periodic motions, Izv. Akad. Nauk SSSR 38 (1974) 1248-1288. | MR | Zbl
, ,[4] On bifurcations of codimension 1, leading to the appearance of fixed points of a countable set of tori, Dokl. Akad. Nauk SSSR 262 (1982) 777-780. | MR | Zbl
, ,[5] SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Invent. Math. 140 (2000) 351-398. | MR | Zbl
, , ,[6] Some cases of dependence of limit cycles on parameters, Uchen. Zap. Gor'kov. Univ. 6 (1939) 3-24.
, ,[7] Qualitative Theory of Dynamical Systems of Second Order, Nauka, Moscow, 1966, p. 569. | MR
, , , ,[8] The Theory of Bifurcations of Dynamical Systems on the Plane, Nauka, Moscow, 1967, p. 487. | MR | Zbl
, , , ,[9] Systèmes grossiers, Dokl. Akad. Nauk USSR 14 (1937) 247-251. | Zbl
, ,[10] Geodesic flows on closed Riemannian manifolds of negative curvature, Proc. Steklov Math. Inst. 90 (1967) 1-235. | MR | Zbl
,[11] Possible new strange attractors with spiral structure, Comm. Math. Phys. 79 (1981) 673-679. | MR | Zbl
, , ,[12] Small denominators I: On the mapping of a circle to itself, Izv. Akad. Nauk Math. Ser. 25 (1961) 21-86. | MR | Zbl
,[13] Lectures on bifurcations and versal families, Uspekhi Math. Nauk 27 (1972) 119-184. | MR | Zbl
,[14] Kolmogorov's hydrodynamics attractors. turbulence and stochastic processes: Kolmogorov's ideas 50 years on, Proc. Roy. Soc. London Ser. A 434 (1991) 19-22. | MR | Zbl
,[15] Bifurcation Theory and Catastrophe Theory, Springer, 1999. | MR | Zbl
, , , ,[16] Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. H. Poincaré 20 (2003) 805-841. | EuDML | Numdam | MR | Zbl
, ,[17] Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math. 154 (2003) 451-550. | MR | Zbl
, , ,[18] A. Avila, C.G. Moreira, Phase-parameter relation sharp statistical properties of unimodal maps, Contemp. Math., in press.
[19] A. Avila, C.G. Moreira, Statistical properties of unimodal maps: physical measures, periodic orbits and pathological laminations, Publ. Math. IHES, in press. | EuDML | Numdam | MR | Zbl
[20] A. Avila, C.G. Moreira, Statistical properties of unimodal maps: the quadratic family, Ann. of Math., in press. | MR | Zbl
[21] Statistical properties of unimodal maps: smooth families with negative Schwarzian derivative, Astérisque 286 (2003) 81-118. | Numdam | MR | Zbl
, ,[22] The explosion of singular cycles, Publ. Math. IHES 78 (1993) 207-232. | EuDML | Numdam | MR | Zbl
, , , ,[23] The dynamics of the Hénon map, Ann. of Math. 133 (1991) 73-169. | MR | Zbl
, ,[24] M. Benedicks, M. Viana, Random perturbations and statistical properties of Hénon-like maps, Ann. Inst. H. Poincaré Anal. Non Linéaire. | EuDML | Numdam | MR | Zbl
[25] Solution of the basin problem for Hénon-like attractors, Invent. Math. 143 (2001) 375-434. | MR | Zbl
, ,[26] SBR-measures for certain Hénon maps, Invent. Math. 112 (1993) 541-576. | EuDML | MR | Zbl
, ,[27] Nouvelles recherches sur les systèmes dynamiques, Mem. Pont. Acad. Sci. Novi. Lyncaei 1 (1935) 85-216. | JFM | Zbl
,[28] Dynamics Beyond Uniform Hyperbolicity, Encyclopaedia Math. Sci., vol. 102, Springer, 2004. | MR | Zbl
, , ,[29] A -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. 158 (2003) 355-418. | MR | Zbl
, , ,[30] Robust transitivity and heterodimensional cycles, Astérisque 286 (2003) 187-222. | Numdam | MR | Zbl
, , , ,[31] Lorenz attractors with arbitrary expanding dimension, C. R. Acad. Sci. Paris, Sér. I Math. 325 (1997) 883-888. | MR | Zbl
, , ,[32] The ergodic theory of Axiom A flows, Invent. Math. 29 (1975) 181-202. | EuDML | MR | Zbl
, ,[33] Stochasticity of the attractor in the Lorenz model, in: Nonlinear Waves, Proc. Winter School, Nauka, Moscow, 1980, pp. 212-226.
, ,[34] On non-linear differential equations of the second order, J. London Math. Soc. 20 (1945) 127-153. | MR | Zbl
, ,[35] On non-linear differential equations of the second order, Ann. of Math. 48 (1947) 472-494. | MR | Zbl
, ,[36] Infinitely many coexisting strange attractors, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 539-579. | EuDML | Numdam | MR | Zbl
,[37] Itérations d'endomorphims et groupe de renormalization, C. R. Acad. Sci. Paris, Sér. I 287 (1978) 577-580. | MR | Zbl
, ,[38] Bifurcations and global stability of families of gradients, Publ. Math. IHES 70 (1989) 70-163. | EuDML | Numdam | MR | Zbl
, ,[39] Structural stability of diffeomorphisms on two-manifolds, Invent. Math. 21 (1973) 233-246. | EuDML | MR | Zbl
,[40] On relaxation oscillations, Philos. Mag. Ser. 7 2 (1926) 978-992. | JFM
,[41] Robust nonhyperbolic dynamics and heterodimensional cycles, Ergodic Theory Dynam. Systems 15 (1995) 291-315. | MR | Zbl
,[42] Partial hyperbolicity and robust transitivity, Acta Math. 183 (1999) 1-43. | MR | Zbl
, , ,[43] Large measure of hyperbolic dynamics when unfolding heterodimensional cycles, Nonlinearity 10 (1997) 857-884. | MR | Zbl
, ,[44] On differentiability of SRB states for partially hyperbolic systems, Invent. Math. 155 (2004) 359-449. | MR | Zbl
,[45] Qualitative universality for a class of nonlinear transformations, J. Statist. Phys. 19 (1978) 25-52. | MR | Zbl
,[46] Anomalous Anosov Flows. Global Theory of Dynamical Systems, Lecture Notes in Math., vol. 819, Springer, 1980. | MR | Zbl
, ,[47] Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits, Chaos 6 (1996) 15-31. | MR | Zbl
, , ,[48] A. Gorodetski, V. Kaloshin, How often surface diffeomorphisms have infinitely many sinks and hyperbolicity of periodic points near a homoclinic tangency, in press. | MR | Zbl
[49] Generic hyperbolicity in the logistic family, Ann. of Math. 146 (1997) 1-52. | MR | Zbl
, ,[50] Structural stability of Lorenz attractors, Publ. Math. IHES 50 (1979) 59-72. | EuDML | Numdam | MR | Zbl
, ,[51] Connecting invariant manifolds and the solution of the stability and Ω-stability conjectures for flows, Ann. of Math. 145 (1997) 81-137. | MR | Zbl
,[52] A two dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976) 69-77. | MR | Zbl
,[53] Nonlocal Bifurcations, Math. Surveys and Monographs, vol. 66, Amer. Math. Soc., 1999. | MR | Zbl
, ,[54] On smooth mappings of the circle into itself, Math. USSR-Sb. 14 (1971) 161-185. | MR | Zbl
,[55] Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Comm. Math. Phys. 81 (1981) 39-88. | MR | Zbl
,[56] V.Yu. Kaloshin, B.R. Hunt, Stretched exponential estimate on growth of the number of periodic points for prevalent diffeomorphisms, in press. | MR | Zbl
[57] Ergodic Theory of Random Perturbations, Birkhäuser, 1986. | MR
,[58] Random Perturbations of Dynamical Systems, Birkhäuser, 1988. | MR | Zbl
,[59] Getting rid of the negative Schwarzian derivative condition, Ann. of Math. 152 (2000) 743-762. | EuDML | MR | Zbl
,[60] Axiom A maps are dense in the space of unimodal maps in the topology, Ann. of Math. 157 (2003) 1-43. | MR | Zbl
,[61] O. Kozlovski, W. Shen, S. van Strien, Density of hyperbolicity in dimension one, Preprint, Warwick, 2004. | MR | Zbl
[62] O. Kozlovski, S. van Strien, W. Shen, Rigidity for real polynomials, Preprint, Warwick, 2003. | MR | Zbl
[63] Stability of singular horseshoes, Topology 25 (1986) 337-352. | MR | Zbl
, ,[64] Qualitative analysis of the periodically forced relaxation oscillations, Mem. Amer. Math. Soc. 32 (244) (1981). | MR | Zbl
,[65] A second order differential equations with singular solutions, Ann. of Math. 50 (1949) 127-153. | MR | Zbl
,[66] Hyperbolicity properties of the non-wandering sets of certain 3-dimensional systems, Acta Math. Sci. 3 (1983) 361-368. | MR | Zbl
,[67] On the stability conjecture, Chinese Ann. of Math. 1 (1980) 9-30. | MR | Zbl
,[68] On non-linear differential equations of the second order, III, Acta Math. 97 (1957) 267-308. | MR | Zbl
,[69] On non-linear differential equations of the second order, IV, Acta Math. 98 (1957) 1-110. | MR | Zbl
,[70] Deterministic nonperiodic flow, J. Atmosph. Sci. 20 (1963) 130-141.
,[71] Almost every real quadratic map is either regular or stochastic, Ann. of Math. 156 (2002) 1-78. | MR | Zbl
,[72] An ergodic closing lemma, Ann. of Math. 116 (1982) 503-540. | MR | Zbl
,[73] A proof of the stability conjecture, Publ. Math. IHES 66 (1988) 161-210. | Numdam | MR | Zbl
,[74] Invariant measures for Lebesgue typical quadratic maps. Géométrie complexe et systèmes dynamiques (Orsay, 1995), Astérisque 261 (2001) 239-252. | Numdam | MR | Zbl
, ,[75] Simple mathematical models with very complicated dynamics, Nature 261 (1976) 459-467.
,[76] Complex Dynamics and Renormalization, Ann. of Math. Stud., vol. 142, Princeton University Press, 1994. | MR | Zbl
,[77] Sinai-Ruelle-Bowen measures for contracting Lorenz maps and flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 247-276. | Numdam | MR | Zbl
,[78] Stochastic stability for contracting Lorenz maps and flows, Comm. Math. Phys. 212 (2000) 277-296. | MR | Zbl
,[79] Abundance of strange attractors, Acta Math. 171 (1993) 1-71. | MR | Zbl
, ,[80] A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems 23 (2003) 1575-1600. | MR | Zbl
, ,[81] Singular hyperbolic systems, Proc. Amer. Math. Soc. 127 (1999) 3393-3401. | MR | Zbl
, , ,[82] Robust transitive singular sets for 3-flows are partially hyperbolic attractors and repellers, Ann. of Math. 160 (2004) 1-58. | MR | Zbl
, , ,[83] Homoclinic tangencies and fractal invariants in arbitrary dimension, C. R. Acad. Sci. Paris, Sér. I Math. 333 (2001) 475-480. | MR | Zbl
, , ,[84] Stable intersections of regular Cantor sets with large Hausdorff dimensions, Ann. of Math. 154 (2001) 45-96. | MR | Zbl
, ,[85] Diffeomorphisms with infinitely many sinks, Topology 13 (1974) 9-18. | MR | Zbl
,[86] The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. IHES 50 (1979) 101-151. | Numdam | MR | Zbl
,[87] Cycles and bifurcation theory, Astérisque 31 (1976) 44-140. | Numdam | MR | Zbl
, ,[88] Bifurcations and stability of families of diffeomorphisms, Publ. Math. IHES 57 (1983) 5-71. | Numdam | MR | Zbl
, , ,[89] On Morse-Smale dynamical systems, Topology 8 (1969) 385-405. | MR | Zbl
,[90] A global view of Dynamics and a conjecture on the denseness of finitude of attractors. Géométrie complexe et systèmes dynamiques (Orsay, 1995), Astérisque 261 (1995) 335-347. | Numdam | MR | Zbl
,[91] Structural stability theorems, in: Global Analysis, Berkeley 1968, Proc. Sympos. Pure Math., vol. XIV, Amer. Math. Soc., 1970, pp. 223-232. | MR | Zbl
, ,[92] Stability of parametrized families of gradient vector fields, Ann. of Math. 118 (1983) 383-421. | MR | Zbl
, ,[93] Cycles and measure of bifurcation sets for two-dimensional diffeomorphisms, Invent. Math. 82 (1985) 397-422. | MR | Zbl
, ,[94] Hyperbolic and the creation of homoclinic orbits, Ann. of Math. 1987 (1987) 337-374. | MR | Zbl
, ,[95] Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, 1993. | MR | Zbl
, ,[96] High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math. 140 (1994) 207-250. | MR | Zbl
, ,[97] Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension, Acta Math. 172 (1994) 91-136. | MR | Zbl
, ,[98] Fers à cheval non uniformément hyperboliques engendrés par une bifurcation homocline et densité nulle des attracteurs, C. R. Acad. Sci. Paris, Sér. I Math. 333 (2001) 867-871. | MR | Zbl
, ,[99] Structural stability on two-dimensional manifolds, Topology 1 (1962) 101-120. | MR | Zbl
,[100] Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynam. Systems 2 (1982) 417-438. | MR | Zbl
, ,[101] E. Pujals, Density of hyperbolicity and homoclinic bifurcation for 3d-diffeomorphisms in attracting regions, IMPA's preprint server, http://www.preprint.impa.br. | MR
[102] Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math. 151 (2000) 961-1023. | MR | Zbl
, ,[103] A structural stability theorem, Ann. of Math. 94 (1971) 447-493. | MR | Zbl
,[104] Structural stability of vector fields, Ann. of Math. 99 (1974) 154-175. | MR | Zbl
,[105] Homoclinic bifurcation to a transitive attractor of Lorenz type, Nonlinearity 2 (1989) 495-518. | MR | Zbl
,[106] The dynamics of perturbations of the contracting Lorenz attractor, Bull. Braz. Math. Soc. 24 (1993) 233-259. | MR | Zbl
,[107] A measure associated with Axiom A attractors, Amer. J. Math. 98 (1976) 619-654. | MR | Zbl
,[108] Lorenz attractors through Shil'nikov-type bifurcation. Part 1, Ergodic Theory Dynam. Systems 10 (1990) 793-821. | MR | Zbl
,[109] The stability theorems for discrete dynamical systems on two-dimensional manifolds, Nagoya Math. J. 90 (1983) 1-55. | MR | Zbl
,[110] On the generation of periodic motion from a trajectory doubly asymptotic to an equilibrium state of saddle type, Math. USSR-Sb. 6 (1968) 428-438. | Zbl
,[111] A 3-dimensional Abraham-Smale example, Proc. Amer. Math. Soc. 34 (1972) 629-630. | MR | Zbl
,[112] Gibbs measures in ergodic theory, Russian Math. Surveys 27 (1972) 21-69. | MR | Zbl
,[113] Diffeomorphisms with many periodic points, in: Differential and Combinatorial Topology, Princeton University Press, 1965. | MR | Zbl
,[114] Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967) 747-817. | MR | Zbl
,[115] Bounds, quadratic differentials and renormalization conjectures, Ann. Math. Soc. Centennial Publ. 2 (1992) 417-466. | MR | Zbl
,[116] How often do simple dynamical systems have infinitely many coexisting sinks?, Comm. Math. Phys. 106 (1986) 635-657. | MR | Zbl
, ,[117] M. Tsujii, Physical measures for partially hyperbolic surface endomorphisms, Acta Math., in press. | MR | Zbl
[118] A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math. 2 (2002) 53-117. | MR | Zbl
,[119] Abundance of hyperbolicity in topology, Ann. Sci. École Norm. Sup. 28 (1995) 747-760. | Numdam | MR | Zbl
,[120] C. Vasquez, Statistical stability for diffeomorphisms with dominated splitting, in press. | Zbl
[121] Strange attractors in higher dimensions, Bull. Braz. Math. Soc. 24 (1993) 13-62. | MR | Zbl
,[122] Multidimensional nonhyperbolic attractors, Publ. Math. IHES 85 (1997) 63-96. | Numdam | MR | Zbl
,[123] What's new on Lorenz strange attractors?, Math. Intelligencer 22 (2000) 6-19. | MR | Zbl
,[124] Homoclinic tangencies and dominated splittings, Nonlinearity 15 (2002) 1445-1469. | MR | Zbl
,[125] Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc. 35 (2004) 419-452. | MR | Zbl
,[126] Stochastic stability of hyperbolic attractors, Ergodic Theory Dynam. Systems 6 (1986) 311-319. | MR | Zbl
,Cited by Sources: