@article{AIHPC_2006__23_6_929_0, author = {Zaslavski, Alexander J.}, title = {A nonintersection property for extremals of variational problems with vector-valued functions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {929--948}, publisher = {Elsevier}, volume = {23}, number = {6}, year = {2006}, doi = {10.1016/j.anihpc.2006.01.002}, mrnumber = {2271702}, zbl = {05138727}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2006.01.002/} }
TY - JOUR AU - Zaslavski, Alexander J. TI - A nonintersection property for extremals of variational problems with vector-valued functions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 929 EP - 948 VL - 23 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2006.01.002/ DO - 10.1016/j.anihpc.2006.01.002 LA - en ID - AIHPC_2006__23_6_929_0 ER -
%0 Journal Article %A Zaslavski, Alexander J. %T A nonintersection property for extremals of variational problems with vector-valued functions %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 929-948 %V 23 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2006.01.002/ %R 10.1016/j.anihpc.2006.01.002 %G en %F AIHPC_2006__23_6_929_0
Zaslavski, Alexander J. A nonintersection property for extremals of variational problems with vector-valued functions. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 6, pp. 929-948. doi : 10.1016/j.anihpc.2006.01.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2006.01.002/
[1] Mather sets for twist maps and geodesics on tori, in: Dynamics Reported, vol. 1, Teubner, Stuttgart, 1988, pp. 1-56. | MR | Zbl
,[2] On minimal laminations of the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 95-138. | Numdam | MR | Zbl
,[3] Optimization - Theory and Applications, Springer-Verlag, New York, 1983. | MR | Zbl
,[4] On optimal development in a multi-sector economy, Rev. Economic Studies 34 (1967) 1-18.
,[5] On the regularity of the minima of variational integrals, Acta Math. 148 (1982) 31-46. | MR
, ,[6] Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. of Math. 33 (1984) 719-739. | JFM | MR
,[7] Infinite horizon autonomous systems with unbounded cost, Appl. Math. Optim. 13 (1985) 19-43. | MR | Zbl
,[8] One dimensional infinite horizon variational problems arising in continuum mechanics, Arch. Rational Mech. Anal. 106 (1989) 161-194. | MR | Zbl
, ,[9] The structure of extremals of a class of second order variational problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 593-629. | Numdam | MR | Zbl
, ,[10] The structure and limiting behavior of locally optimal minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 (2002) 343-370. | Numdam | MR | Zbl
, ,[11] A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc. 26 (1924) 25-60. | JFM | MR
,[12] Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986) 229-272. | Numdam | MR | Zbl
,[13] On some results of Moser and of Bangert, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 673-688. | Numdam | MR | Zbl
, ,[14] On some results of Moser of Bangert. II, Adv. Nonlinear Stud. 4 (2004) 377-396. | MR | Zbl
, ,[15] The existence of periodic minimal energy configurations for one dimensional infinite horizon variational problems arising in continuum mechanics, J. Math. Anal. Appl. 194 (1995) 459-476. | MR | Zbl
,[16] Dynamic properties of optimal solutions of variational problems, Nonlinear Anal. 27 (1996) 895-931. | MR | Zbl
,[17] Existence and uniform boundedness of optimal solutions of variational problems, Abstr. Appl. Anal. 3 (1998) 265-292. | MR | Zbl
,[18] The turnpike property for extremals of nonautonomous variational problems with vector-valued functions, Nonlinear Anal. 42 (2000) 1465-1498. | MR | Zbl
,[19] A turnpike property for a class of variational problems, J. Convex Anal. 12 (2005) 331-349. | MR | Zbl
,[20] Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York, 2006. | MR | Zbl
,Cité par Sources :