@article{AIHPC_2009__26_1_257_0, author = {Gugat, M. and Leugering, G.}, title = {Global {Boundary} {Controllability} of the {Saint-Venant} {System} for {Sloped} {Canals} {With} {Friction}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {257--270}, publisher = {Elsevier}, volume = {26}, number = {1}, year = {2009}, doi = {10.1016/j.anihpc.2008.01.002}, mrnumber = {2483821}, zbl = {1154.76009}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2008.01.002/} }
TY - JOUR AU - Gugat, M. AU - Leugering, G. TI - Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 257 EP - 270 VL - 26 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2008.01.002/ DO - 10.1016/j.anihpc.2008.01.002 LA - en ID - AIHPC_2009__26_1_257_0 ER -
%0 Journal Article %A Gugat, M. %A Leugering, G. %T Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 257-270 %V 26 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2008.01.002/ %R 10.1016/j.anihpc.2008.01.002 %G en %F AIHPC_2009__26_1_257_0
Gugat, M.; Leugering, G. Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 257-270. doi : 10.1016/j.anihpc.2008.01.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2008.01.002/
[1] Boundary Controllability of Nonlinear Hyperbolic Systems, SIAM J. Control 7 (1969) 198-212. | MR | Zbl
,[2] Nonlinear Hyperbolic Problems With Solutions on Preassigned Sets, Michigan Math. J. 17 (1970) 193-209. | MR | Zbl
,[3] Boundary Feedback Control in Networks of Open Channels, Automatica 39 (2003) 1365-1376. | MR | Zbl
, , , , ,[4] Theorie Du Mouvement Non-Permanent Des Eaux Avec Application Aux Crues Des Rivières Et À L'introduction Des Marees Dans Leur Lit, Comptes Rendus Academie des Sciences 73 (1871) 148-154, 237-240. | JFM
,[5] Fluvial Hydraulics, J. Wiley and Sons, Chichester, 1998.
,[6] Boundary Controllability Between Sub- and Supercritical Flow, SIAM J. Control Optim. 42 (2003) 1056-1070. | MR | Zbl
,[7] Optimal Nodal Control of Networked Hyperbolic Systems: Evaluation of Derivatives, Adv. Modeling Optim. 7 (2005) 9-37. | MR | Zbl
,[8] Global Boundary Controllability of the De St. Venant Equations Between Steady States, Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 1-11. | Numdam | MR | Zbl
, ,[9] Global Controllability Between Steady Supercritical Flows in Channel Networks, Math. Methods Appl. Sci. 27 (2004) 781-802. | MR | Zbl
, , ,[10] On the Modelling and Stabilisation of Flows in Networks of Open Canals, SIAM J. Control Optim. 41 (2002) 164-180. | MR | Zbl
, ,[11] Exact Boundary Controllability of Unsteady Flows in a Network of Open Canals, Math. Nachr. 278 (2005) 278-289. | MR | Zbl
,[12] Exact Controllability, Stabilization and Perturbations of Distributed Systems, SIAM Rev. 30 (1988) 1-68. | MR | Zbl
,[13] Hydraulic Engineering, John Wiley, New York, 1995.
, , ,[14] Global Exact Boundary Controllability for First Order Quasilinear Hyperbolic Systems of Diagonal Form, Int. J. Dynamical Systems and Differential Equations 1 (2007) 12-19. | MR | Zbl
, ,[15] Exact Boundary Controllability for Quasilinear Hyperbolic Systems, SIAM J. Control Optim. 41 (2003) 1748-1755. | MR | Zbl
, ,[16] Semi-Global Solution to the Mixed Initial-Boundary Value Problem for Quasilinear Hyperbolic Systems, Chinese Ann. Math. 22 (2001) 325-336. | MR | Zbl
, ,[17] Exact Controllability for Nonautonomous First Order Quasilinear Hyperbolic Systems, Chinese Ann. Math. Ser. B 27 (2006) 643-656. | MR
,[18] Controllability of Partial Differential Equations: Some Results and Open Problems, in: , (Eds.), Handbook of Differential Equations: Evolutionary Differential Equations, Elsevier Science, 2006.
,Cité par Sources :