Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 257-270.
@article{AIHPC_2009__26_1_257_0,
     author = {Gugat, M. and Leugering, G.},
     title = {Global {Boundary} {Controllability} of the {Saint-Venant} {System} for {Sloped} {Canals} {With} {Friction}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {257--270},
     publisher = {Elsevier},
     volume = {26},
     number = {1},
     year = {2009},
     doi = {10.1016/j.anihpc.2008.01.002},
     mrnumber = {2483821},
     zbl = {1154.76009},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2008.01.002/}
}
TY  - JOUR
AU  - Gugat, M.
AU  - Leugering, G.
TI  - Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2009
SP  - 257
EP  - 270
VL  - 26
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2008.01.002/
DO  - 10.1016/j.anihpc.2008.01.002
LA  - en
ID  - AIHPC_2009__26_1_257_0
ER  - 
%0 Journal Article
%A Gugat, M.
%A Leugering, G.
%T Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 257-270
%V 26
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2008.01.002/
%R 10.1016/j.anihpc.2008.01.002
%G en
%F AIHPC_2009__26_1_257_0
Gugat, M.; Leugering, G. Global Boundary Controllability of the Saint-Venant System for Sloped Canals With Friction. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 1, pp. 257-270. doi : 10.1016/j.anihpc.2008.01.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2008.01.002/

[1] Cirina M., Boundary Controllability of Nonlinear Hyperbolic Systems, SIAM J. Control 7 (1969) 198-212. | MR | Zbl

[2] Cirina M., Nonlinear Hyperbolic Problems With Solutions on Preassigned Sets, Michigan Math. J. 17 (1970) 193-209. | MR | Zbl

[3] De Halleux J., Prieur C., Coron J.-M., D'Andréa Novel B., Bastin G., Boundary Feedback Control in Networks of Open Channels, Automatica 39 (2003) 1365-1376. | MR | Zbl

[4] De Saint-Venant B., Theorie Du Mouvement Non-Permanent Des Eaux Avec Application Aux Crues Des Rivières Et À L'introduction Des Marees Dans Leur Lit, Comptes Rendus Academie des Sciences 73 (1871) 148-154, 237-240. | JFM

[5] Graf W. H., Fluvial Hydraulics, J. Wiley and Sons, Chichester, 1998.

[6] Gugat M., Boundary Controllability Between Sub- and Supercritical Flow, SIAM J. Control Optim. 42 (2003) 1056-1070. | MR | Zbl

[7] Gugat M., Optimal Nodal Control of Networked Hyperbolic Systems: Evaluation of Derivatives, Adv. Modeling Optim. 7 (2005) 9-37. | MR | Zbl

[8] Gugat M., Leugering G., Global Boundary Controllability of the De St. Venant Equations Between Steady States, Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 1-11. | Numdam | MR | Zbl

[9] Gugat M., Leugering G., Schmidt E. J.P. G., Global Controllability Between Steady Supercritical Flows in Channel Networks, Math. Methods Appl. Sci. 27 (2004) 781-802. | MR | Zbl

[10] Leugering G., Georg Schmidt E. J.P., On the Modelling and Stabilisation of Flows in Networks of Open Canals, SIAM J. Control Optim. 41 (2002) 164-180. | MR | Zbl

[11] Li T., Exact Boundary Controllability of Unsteady Flows in a Network of Open Canals, Math. Nachr. 278 (2005) 278-289. | MR | Zbl

[12] Lions J. L., Exact Controllability, Stabilization and Perturbations of Distributed Systems, SIAM Rev. 30 (1988) 1-68. | MR | Zbl

[13] Roberson J. A., Cassidy J. J., Chaudhry M. H., Hydraulic Engineering, John Wiley, New York, 1995.

[14] Wang Z., Li T., Global Exact Boundary Controllability for First Order Quasilinear Hyperbolic Systems of Diagonal Form, Int. J. Dynamical Systems and Differential Equations 1 (2007) 12-19. | MR | Zbl

[15] Li T., Rao B., Exact Boundary Controllability for Quasilinear Hyperbolic Systems, SIAM J. Control Optim. 41 (2003) 1748-1755. | MR | Zbl

[16] Li T., Yi J., Semi-Global Solution to the Mixed Initial-Boundary Value Problem for Quasilinear Hyperbolic Systems, Chinese Ann. Math. 22 (2001) 325-336. | MR | Zbl

[17] Wang Z., Exact Controllability for Nonautonomous First Order Quasilinear Hyperbolic Systems, Chinese Ann. Math. Ser. B 27 (2006) 643-656. | MR

[18] Zuazua E., Controllability of Partial Differential Equations: Some Results and Open Problems, in: Dafermos C., Feireisl E. (Eds.), Handbook of Differential Equations: Evolutionary Differential Equations, Elsevier Science, 2006.

Cité par Sources :