A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations
Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1607-1619.
@article{AIHPC_2009__26_5_1607_0,
     author = {Dong, Hongjie and Pavlovi\'c, Nata\v{s}A},
     title = {A {Regularity} {Criterion} for the {Dissipative} {Quasi-Geostrophic} {Equations}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1607--1619},
     publisher = {Elsevier},
     volume = {26},
     number = {5},
     year = {2009},
     doi = {10.1016/j.anihpc.2008.08.001},
     mrnumber = {2566702},
     zbl = {1176.35133},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2008.08.001/}
}
TY  - JOUR
AU  - Dong, Hongjie
AU  - Pavlović, NatašA
TI  - A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2009
SP  - 1607
EP  - 1619
VL  - 26
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2008.08.001/
DO  - 10.1016/j.anihpc.2008.08.001
LA  - en
ID  - AIHPC_2009__26_5_1607_0
ER  - 
%0 Journal Article
%A Dong, Hongjie
%A Pavlović, NatašA
%T A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2009
%P 1607-1619
%V 26
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2008.08.001/
%R 10.1016/j.anihpc.2008.08.001
%G en
%F AIHPC_2009__26_5_1607_0
Dong, Hongjie; Pavlović, NatašA. A Regularity Criterion for the Dissipative Quasi-Geostrophic Equations. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 5, pp. 1607-1619. doi : 10.1016/j.anihpc.2008.08.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2008.08.001/

[1] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, preprint.

[2] Chae D., The Quasi-Geostrophic Equation in the Triebel-Lizorkin Spaces, Nonlinearity 16 (2) (2003) 479-495. | MR | Zbl

[3] Chae D., On the Regularity Conditions for the Dissipative Quasi-Geostrophic Equations, SIAM J. Math. Anal. 37 (5) (2006) 1649-1656. | MR | Zbl

[4] Chae D., Lee J., Global Well-Posedness in the Super-Critical Dissipative Quasi-Geostrophic Equations, Commun. Math. Phys. 233 (2003) 297-311. | MR | Zbl

[5] Chemin J.-Y., Théorèmes D'unicité Pour Le Système De Navier-Stokes Tridimensionnel, J. Anal. Math. 77 (1999) 27-50, (in French). | MR | Zbl

[6] Chen Q., Miao C., Zhang Z., A New Bernstein's Inequality and the 2D Dissipative Quasi-Geostrophic Equation, Commun. Math. Phys. 271 (3) (2007) 821-838. | MR | Zbl

[7] Cheskidov A., Shvydkoy R., On the Regularity of Weak Solutions of the 3D Navier-Stokes Equations in B , -1 , preprint, arXiv: math.AP/0708.3067. | MR

[8] Constantin P., Cordoba D., Wu J., On the Critical Dissipative Quasi-Geostrophic Equation, Indiana Univ. Math. J. 50 (2001) 97-107. | MR | Zbl

[9] Constantin P., Majda A. J., Tabak E., Formation of Strong Fronts in the 2-D Quasigeostrophic Thermal Active Scalar, Nonlinearity 7 (6) (1994) 1495-1533. | MR | Zbl

[10] Constantin P., Wu J., Behavior of Solutions of 2D Quasi-Geostrophic Equations, SIAM J. Math. Anal. 30 (1999) 937-948. | MR | Zbl

[11] P. Constantin, J. Wu, Hölder continuity of solutions of super-critical dissipative hydrodynamic transport equations, Ann. I. H. Poincaré - AN (2007), doi:10.1016/j.anihpc.2007.10.002. | Numdam | Zbl

[12] P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, Ann. I. H. Poincaré - AN (2007), doi:10.1016/j.anihpc.2007.10.001. | Numdam | Zbl

[13] Danchin R., Density-Dependent Incompressible Viscous Fluids in Critical Spaces, Proc. Roy. Soc. Edinburgh Sect. A 133 (6) (2003) 1311-1334. | MR | Zbl

[14] Dong B.-Q., Chen Z.-M., A Remark on Regularity Criterion for the Dissipative Quasi-Geostrophic Equations, J. Math. Anal. Appl. (2007) 1212-1217. | MR | Zbl

[15] H. Dong, Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness, 2007, submitted for publication.

[16] Dong H., Du D., Global Well-Posedness and a Decay Estimate for the Critical Dissipative Quasi-Geostrophic Equation in the Whole Space, Discrete Contin. Dyn. Syst. 21 (4) (2008) 1095-1101. | MR | Zbl

[17] H. Dong, D. Li, On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces, 2007, submitted for publication.

[18] Escauriaza L., Seregin G., Šverak V., L 3, -Solutions of the Navier-Stokes Equations and Backward Uniqueness, Russian Math. Surveys 58 (2003). | MR | Zbl

[19] Giga Y., Solutions for Semilinear Parabolic Equations in L p and Regularity of Weak Solutions of the Navier-Stokes System, J. Differential Equations 61 (1986) 186-212. | MR | Zbl

[20] Hmidi T., Keraani S., Global Solutions of the Super-Critical 2D Quasi-Geostrophic Equation in Besov Spaces, Adv. Math. 214 (2) (2007) 618-638. | MR | Zbl

[21] Ju N., The Maximum Principle and the Global Attractor for the Dissipative 2D Quasi-Geostrophic Equations, Commun. Math. Phys. 255 (1) (2005) 161-181. | MR | Zbl

[22] Kiselev A., Nazarov F., Volberg A., Global Well-Posedness for the Critical 2D Dissipative Quasi-Geostrophic Equation, Invent. Math. 167 (3) (2007) 445-453. | MR | Zbl

[23] Ladyzhenskaya O. A., On Uniqueness and Smoothness of Generalized Solutions to the Navier-Stokes Equations, Zapiski Nauchn. Seminar. POMI 5 (1967) 169-185. | MR | Zbl

[24] Miura H., Dissipative Quasi-Geostrophic Equation for Large Initial Data in the Critical Sobolev Space, Commun. Math. Phys. 267 (1) (2006) 141-157. | MR | Zbl

[25] Pedlosky J., Geophysical Fluid Dynamics, Springer, New York, 1987. | Zbl

[26] Prodi G., Un Teorema Di Unicità Per El Equazioni Di Navier-Stokes, Ann. Mat. Pura Appl. 48 (1959) 173-182. | MR | Zbl

[27] S. Resnick, Dynamical problems in nonlinear advective partial differential equations, Ph.D. thesis, University of Chicago, 1995.

[28] Serrin J., On the Interior Regularity of Weak Solutions of the Navier-Stokes Equations, Arch. Ration. Mech. Anal. 9 (1962) 187-195. | MR | Zbl

[29] Wu J., Global Solutions of the 2D Dissipative Quasi-Geostrophic Equations in Besov Spaces, SIAM J. Math. Anal. 36 (3) (2004/2005) 1014-1030, (electronic). | MR | Zbl

[30] Wu J., Lower Bounds for an Integral Involving Fractional Laplacians and the Generalized Navier-Stokes Equations in Besov Spaces, Commun. Math. Phys. 263 (3) (2006) 803-831. | MR | Zbl

[31] Wu J., Existence and Uniqueness Results for the 2-D Dissipative Quasi-Geostrophic Equation, Nonlinear Anal. 67 (2007) 3013-3036. | MR | Zbl

Cité par Sources :