@article{AIHPC_2009__26_4_1299_0, author = {Yu, Yifeng}, title = {Uniqueness of {Values} of {Aronsson} {Operators} and {Running} {Costs} in {{\textquotedblleft}tug-of-War{\textquotedblright}} {Games}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1299--1308}, publisher = {Elsevier}, volume = {26}, number = {4}, year = {2009}, doi = {10.1016/j.anihpc.2008.11.001}, mrnumber = {2542726}, zbl = {1176.35074}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2008.11.001/} }
TY - JOUR AU - Yu, Yifeng TI - Uniqueness of Values of Aronsson Operators and Running Costs in “tug-of-War” Games JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 1299 EP - 1308 VL - 26 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2008.11.001/ DO - 10.1016/j.anihpc.2008.11.001 LA - en ID - AIHPC_2009__26_4_1299_0 ER -
%0 Journal Article %A Yu, Yifeng %T Uniqueness of Values of Aronsson Operators and Running Costs in “tug-of-War” Games %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 1299-1308 %V 26 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2008.11.001/ %R 10.1016/j.anihpc.2008.11.001 %G en %F AIHPC_2009__26_4_1299_0
Yu, Yifeng. Uniqueness of Values of Aronsson Operators and Running Costs in “tug-of-War” Games. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 4, pp. 1299-1308. doi : 10.1016/j.anihpc.2008.11.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2008.11.001/
[1] Minimization Problem for the Functional , Ark. Mat. 6 (1965) 33-53. | MR | Zbl
,[2] Minimization Problem for the Functional . II, Ark. Mat. 6 (1969) 409-431. | MR | Zbl
,[3] Extension of Functions Satisfying Lipschitz Conditions, Ark. Mat. 6 (1967) 551-561. | MR | Zbl
,[4] Minimization Problem for the Functional . III, Ark. Mat. 7 (1969) 509-512. | MR | Zbl
,[5] The Infinity Laplacian, Aronsson's Equation and Their Generalizations, Trans. Amer. Math. Soc. 360 (1) (2008) 77-101, (electronic). | MR | Zbl
, , ,[6] The Euler Equation and Absolute Minimizers of Functionals, Arch. Ration. Mech. Anal. 157 (4) (2001) 255-283. | MR | Zbl
, , ,[7] An Efficient Derivation of the Arronson Equation, Arch. Ration. Mech. Anal. 167 (4) (2003) 271-279. | MR | Zbl
,[8] Optimal Lipschitz Extensions and the Infinity Laplacian, Cal. Var. Partial Differential Equations 13 (2) (2001) 123-139. | MR | Zbl
, , ,[9] User's Guide to Viscosity Solutions of Second Order Partial Differential Equations, Bull. Amer. Math. Soc. 27 (1992) 1-67. | MR | Zbl
, , ,[10] Derivation of Aronsson Equation for Hamiltonian, Trans. Amer. Math. Soc. 361 (2009) 103-124. | MR | Zbl
, , ,[11] Some Min-Max Methods for the Hamilton-Jacobi Equation, Indiana Univ. Math. J. 33 (1) (1984) 31-50. | MR | Zbl
,[12] Uniqueness of Lipschitz Extensions: Minimizing the Sup Norm of the Gradient, Arch. Ration. Mech. Anal. 123 (1) (1993) 51-74. | MR | Zbl
,[13] On the Single Valuedness of Hamilton-Jacobi Operators, Nonlinear Anal. 10 (12) (1986) 1477-1483. | MR | Zbl
,[14] Generalized Cone Comparison, Aronsson Equation, and Absolute Minimizers, Comm. Partial Differential Equations 31 (7-9) (2006) 1027-1046. | MR
, , ,[15] Minimization Problems for Lipschitz Functions Via Viscosity Solutions, Ann. Acad. Sci. Fenn. Math. Diss. 115 (1998). | MR | Zbl
,[16] Tug-of-War and the Infinity Laplacian, J. Amer. Math. Soc. Math. 22 (2009) 167-210. | MR
, , , ,[17] Variational Problems and the Aronsson Equations, Arch. Ration. Mech. Anal. 182 (1) (2006) 153-180. | MR | Zbl
,Cité par Sources :