@article{AIHPC_2009__26_6_2359_0, author = {Lindgren, Erik and Shahgholian, Henrik and Edquist, Anders}, title = {On the {Two-Phase} {Membrane} {Problem} {With} {Coefficients} {Below} the {Lipschitz} {Threshold}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2359--2372}, publisher = {Elsevier}, volume = {26}, number = {6}, year = {2009}, doi = {10.1016/j.anihpc.2009.03.006}, mrnumber = {2569898}, zbl = {1180.35194}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.03.006/} }
TY - JOUR AU - Lindgren, Erik AU - Shahgholian, Henrik AU - Edquist, Anders TI - On the Two-Phase Membrane Problem With Coefficients Below the Lipschitz Threshold JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2359 EP - 2372 VL - 26 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.03.006/ DO - 10.1016/j.anihpc.2009.03.006 LA - en ID - AIHPC_2009__26_6_2359_0 ER -
%0 Journal Article %A Lindgren, Erik %A Shahgholian, Henrik %A Edquist, Anders %T On the Two-Phase Membrane Problem With Coefficients Below the Lipschitz Threshold %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2359-2372 %V 26 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.03.006/ %R 10.1016/j.anihpc.2009.03.006 %G en %F AIHPC_2009__26_6_2359_0
Lindgren, Erik; Shahgholian, Henrik; Edquist, Anders. On the Two-Phase Membrane Problem With Coefficients Below the Lipschitz Threshold. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2359-2372. doi : 10.1016/j.anihpc.2009.03.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.03.006/
[1] Variational Problems With Two Phases and Their Free Boundaries, Trans. Amer. Math. Soc. 282 (2) (1984) 431-461. | MR | Zbl
, , ,[2] Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions. II, Comm. Pure Appl. Math. 17 (1964) 35-92. | MR | Zbl
, , ,[3] Sharp Results for the Regularity and Stability of the Free Boundary in the Obstacle Problem, Indiana Univ. Math. J. 50 (3) (2001) 1077-1112. | MR | Zbl
,[4] Boundary Regularity and Compactness for Overdetermined Problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (4) (2003) 787-802. | Numdam | MR | Zbl
, ,[5] The Obstacle Problem Revisited, J. Fourier Anal. Appl. 4 (4-5) (1998) 383-402. | MR | Zbl
,[6] Some New Monotonicity Theorems With Applications to Free Boundary Problems, Ann. of Math. (2) 155 (2) (2002) 369-404. | MR | Zbl
, , ,[7] Asymptotically Optimally Doubling Measures and Reifenberg Flat Sets With Vanishing Constant, Comm. Pure Appl. Math. 54 (4) (2001) 385-449. | MR | Zbl
, , ,[8] A Two-Phase Obstacle-Type Problem for the P-Laplacian, Calc. Var. Partial Differential Equations 35 (4) (2009) 421-433. | MR | Zbl
, ,[9] Regularity in Elliptic Free Boundary Problems, J. Anal. Math. 34 (1978/1979) 86-119. | MR | Zbl
, , ,[10] An Introduction to Variational Inequalities and Their Applications, Pure Appl. Math., vol. 88, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980. | MR | Zbl
, ,[11] Solution of the Plateau Problem for M-Dimensional Surfaces of Varying Topological Type, Acta Math. 104 (1960) 1-92. | MR | Zbl
,[12] Regularity in Semilinear Elliptic Problems, Comm. Pure Appl. Math. 56 (2) (2003) 278-281. | MR
,[13] Global Solutions of an Obstacle-Problem-Like Equation With Two Phases, Monatsh. Math. 142 (1-2) (2004) 27-34. | MR | Zbl
, , ,[14] The Two-Phase Membrane Problem-Regularity of the Free Boundaries in Higher Dimensions, Int. Math. Res. Not. IMRN 8 (2007), Art. ID rnm026, 16 pp. | MR | Zbl
, , ,[15] Two-Phase Obstacle Problem, Function theory and phase transitions, J. Math. Sci. (N. Y.) 106 (3) (2001) 3073-3077. | MR
,[16] An Obstacle-Problem-Like Equation With Two Phases: Pointwise Regularity of the Solution and an Estimate of the Hausdorff Dimension of the Free Boundary, Interfaces Free Bound. 3 (2) (2001) 121-128. | MR | Zbl
,[17] Inequalities for the Green Function and Boundary Continuity of the Gradient of Solutions of Elliptic Differential Equations, Math. Scand. 21 (1967/1968) 17-37. | MR | Zbl
,Cité par Sources :