@article{AIHPC_2009__26_6_2373_0, author = {Gu, Qilong and Li, Tatsien}, title = {Exact {Boundary} {Controllability} for {Quasilinear} {Wave} {Equations} in a {Planar} {Tree-Like} {Network} of {Strings}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2373--2384}, publisher = {Elsevier}, volume = {26}, number = {6}, year = {2009}, doi = {10.1016/j.anihpc.2009.05.002}, mrnumber = {2569899}, zbl = {1180.35326}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.05.002/} }
TY - JOUR AU - Gu, Qilong AU - Li, Tatsien TI - Exact Boundary Controllability for Quasilinear Wave Equations in a Planar Tree-Like Network of Strings JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2373 EP - 2384 VL - 26 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.05.002/ DO - 10.1016/j.anihpc.2009.05.002 LA - en ID - AIHPC_2009__26_6_2373_0 ER -
%0 Journal Article %A Gu, Qilong %A Li, Tatsien %T Exact Boundary Controllability for Quasilinear Wave Equations in a Planar Tree-Like Network of Strings %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2373-2384 %V 26 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.05.002/ %R 10.1016/j.anihpc.2009.05.002 %G en %F AIHPC_2009__26_6_2373_0
Gu, Qilong; Li, Tatsien. Exact Boundary Controllability for Quasilinear Wave Equations in a Planar Tree-Like Network of Strings. Annales de l'I.H.P. Analyse non linéaire, Volume 26 (2009) no. 6, pp. 2373-2384. doi : 10.1016/j.anihpc.2009.05.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.05.002/
[1] Stabilization of Star-Shaped Networks of Strings, Differential Integral Equations 17 (2004) 1395-1410. | MR | Zbl
, ,[2] Remark on Stabilization of Tree-Shaped Networks of Strings, Appl. Math. 52 (2007) 327-343. | MR | Zbl
, ,[3] Stabilization of Generic Trees of Strings, J. Dyn. Control Syst. 11 (2005) 177-193. | MR | Zbl
, , ,[4] Wave Propagation, Observation and Control in 1-D Flexible Multi-Structures, Math. Appl., vol. 50, 2000. | Zbl
, ,[5] Boundary Control by Semilinear Evolution Equations, Russian Math. Surveys 44 (1989) 183-184. | MR | Zbl
,[6] Modeling, Analysis and Control of Multi-Link Structures, Systems Control Found. Appl., Birhäuser-Basel, 1994. | Zbl
, , ,[7] Exact Controllability of Semilinear Abstract Systems With Applications to Waves and Plates Boundary Control Problems, Appl. Math. Optim. 23 (1991) 109-154. | MR | Zbl
, ,[8] Semi-Global Solution to the Mixed Initial-Boundary Value Problem for Quasilinear Hyperbolic Systems, Chinese Ann. Math. Ser. B 22 (2001) 325-336. | MR | Zbl
, ,[9] Exact Boundary Controllability for Quasilinear Hyperbolic Systems, SIAM J. Control Optim. 41 (2003) 1748-1755. | Zbl
, ,[10] Local Exact Boundary Controllability for a Class of Quasilinear Hyperbolic Systems, Chinese Ann. Math. Ser. B 23 (2002) 209-218. | MR
, ,[11] Contrôlabilité Exacte Frontière Pour Les Équations Des Ondes Quasi Linéaires Unidimensionnelles, C. R. Acad. Sci. Paris Sér. I 337 (2003) 271-276. | MR | Zbl
, ,[12] Exact Boundary Controllability for 1-D Quasilinear Wave Equations, SIAM J. Control Optim. 45 (2006) 1074-1083. | MR | Zbl
, ,[13] Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke Univ. Math. Ser., vol. V, 1985. | Zbl
, ,[14] Contrôlabilité Exacte, Perturbations Et Stabilisation De Systèmes Distribués, Vol. I, Masson, 1988. | Zbl
,[15] Exact Controllability, Stabilization and Perturbations for Distributed Systems, SIAM Rev. 30 (1988) 1-68. | MR | Zbl
,[16] Stabilization of the Wave Equation on 1-D Networks With a Delay Term in the Nodal Feedbacks, Netw. Heterog. Media 2 (2007) 425-479, (electronic). | MR
, ,[17] Controllability and Stabilizability Theory for Linear Partial Differential Equations, Recent Progress and Open Questions, SIAM Rev. 20 (1978) 639-739. | MR | Zbl
,[18] On the Modeling and Exact Controllability of Networks of Vibrating Strings, SIAM J. Control Optim. 30 (1992) 229-245. | MR | Zbl
,[19] Exact Controllability for the Semilinear Wave Equation, J. Math. Pures Appl. 69 (1990) 1-31. | MR | Zbl
,[20] Exact Controllability for Semilinear Wave Equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993) 109-129. | Numdam | MR | Zbl
,[21] Controllability of Partial Differential Equations and Its Semi-Discrete Approximation, Discrete Contin. Dyn. Syst. 8 (2002) 469-513. | MR | Zbl
,Cited by Sources: