@article{AIHPC_2009__26_6_2385_0, author = {Thomann, Laurent}, title = {Random {Data} {Cauchy} {Problem} for {Supercritical} {Schr\"odinger} {Equations}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2385--2402}, publisher = {Elsevier}, volume = {26}, number = {6}, year = {2009}, doi = {10.1016/j.anihpc.2009.06.001}, mrnumber = {2569900}, zbl = {1180.35491}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.06.001/} }
TY - JOUR AU - Thomann, Laurent TI - Random Data Cauchy Problem for Supercritical Schrödinger Equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2009 SP - 2385 EP - 2402 VL - 26 IS - 6 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2009.06.001/ DO - 10.1016/j.anihpc.2009.06.001 LA - en ID - AIHPC_2009__26_6_2385_0 ER -
%0 Journal Article %A Thomann, Laurent %T Random Data Cauchy Problem for Supercritical Schrödinger Equations %J Annales de l'I.H.P. Analyse non linéaire %D 2009 %P 2385-2402 %V 26 %N 6 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2009.06.001/ %R 10.1016/j.anihpc.2009.06.001 %G en %F AIHPC_2009__26_6_2385_0
Thomann, Laurent. Random Data Cauchy Problem for Supercritical Schrödinger Equations. Annales de l'I.H.P. Analyse non linéaire, Tome 26 (2009) no. 6, pp. 2385-2402. doi : 10.1016/j.anihpc.2009.06.001. https://www.numdam.org/articles/10.1016/j.anihpc.2009.06.001/
[1] Periodic Nonlinear Schrödinger Equation and Invariant Measures, Comm. Math. Phys. 166 (1994) 1-26. | MR | Zbl
,[2] Invariant Measures for the 2D-Defocusing Nonlinear Schrödinger Equation, Comm. Math. Phys. 176 (1996) 421-445. | MR | Zbl
,[3] N. Burq, L. Thomann, N. Tzvetkov, Gibbs measures for the nonlinear harmonic oscillator, preprint.
[4] Invariant Measure for the Three-Dimensional Nonlinear Wave Equation, Int. Math. Res. Not. IMRN 22 (2007), Art. ID rnm108, 26 pp. | Zbl
, ,[5] Random Data Cauchy Theory for Supercritical Wave Equations I: Local Existence Theory, Invent. Math. 173 (3) (2008) 449-475. | MR | Zbl
, ,[6] Random Data Cauchy Theory for Supercritical Wave Equations II: a Global Existence Result, Invent. Math. 173 (3) (2008) 477-496. | MR
, ,[7] Geometric Optics and Instability for Semi-Classical Schrödinger Equations, Arch. Ration. Mech. Anal. 183 (3) (2007) 525-553. | MR | Zbl
,[8] Rotating Points for the Conformal NLS Scattering Operator, Dyn. Partial Differ. Equ. 6 (1) (2009) 35-51. | MR
,[9] Linear Vs. Nonlinear Effects for Nonlinear Schrödinger Equations With Potential, in: Contemp. Math., vol. 7(4), 2005, pp. 483-508. | MR | Zbl
,[10] On a Class of Nonlinear Schrödinger Equations, J. Funct. Anal. 32 (1) (1979) 1-71. | MR | Zbl
, ,[11] Endpoint Strichartz Estimates, Amer. J. Math. 120 (5) (1998) 955-980. | MR | Zbl
, ,
[12]
[13] Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Math. Surveys Monogr., vol. 81, American Mathematical Society, Providence, RI, 2000. | MR | Zbl
,[14] Instabilities for Supercritical Schrödinger Equations in Analytic Manifolds, J. Differential Equations 245 (1) (2008) 249-280. | MR | Zbl
,[15] N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation, Probab. Theory Related Fields, in press. | MR
[16] Invariant Measures for the Defocusing NLS, Ann. Inst. Fourier 58 (2008) 2543-2604. | Numdam | MR | Zbl
,[17] Invariant Measures for the Nonlinear Schrödinger Equation on the Disc, Dyn. Partial Differ. Equ. 3 (2006) 111-160. | MR | Zbl
,[18] Local Smoothing Property and Strichartz Inequality for Schrödinger Equations With Potentials Superquadratic at Infinity, J. Differential Equations 1 (2004) 81-110. | MR | Zbl
, ,[19] Smoothing Property for Schrödinger Equations With Potential Superquadratic at Infinity, Comm. Math. Phys. 221 (3) (2001) 573-590. | MR | Zbl
, ,[20] KdV and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Math., vol. 1756, Springer, 2001. | MR | Zbl
,- Wellposedness of the cubic Gross–Pitaevskii equation with spatial white noise on R 2, Nonlinearity, Volume 38 (2025) no. 3, p. 035026 | DOI:10.1088/1361-6544/adb237
- Local smoothing for the Hermite wave equation, Pure and Applied Analysis, Volume 7 (2025) no. 1, p. 19 | DOI:10.2140/paa.2025.7.19
- Probabilistic Radial Strichartz Estimates and Its Application, Funkcialaj Ekvacioj, Volume 67 (2024) no. 2, p. 199 | DOI:10.1619/fesi.67.199
- Invariant Gibbs dynamics for the two-dimensional Zakharov-Yukawa system, Journal of Functional Analysis, Volume 286 (2024) no. 4, p. 110244 | DOI:10.1016/j.jfa.2023.110244
- Almost Sure Scattering for the One Dimensional Nonlinear Schrödinger Equation, Memoirs of the American Mathematical Society, Volume 296 (2024) no. 1480 | DOI:10.1090/memo/1480
- Probabilistic local wellposedness of 1D quintic NLS below L2(R), Journal of Mathematical Analysis and Applications, Volume 527 (2023) no. 1, p. 127195 | DOI:10.1016/j.jmaa.2023.127195
- Almost sure scattering at mass regularity for radial Schrödinger equations, Nonlinearity, Volume 35 (2022) no. 10, p. 5311 | DOI:10.1088/1361-6544/ac8aed
- Large global solutions for nonlinear Schrödinger equations I, mass-subcritical cases, Advances in Mathematics, Volume 391 (2021), p. 107973 | DOI:10.1016/j.aim.2021.107973
- Large Global Solutions for Nonlinear Schrödinger Equations II, Mass-Supercritical, Energy-Subcritical Cases, Communications in Mathematical Physics (2021) | DOI:10.1007/s00220-021-03971-w
- Optimal Local Well-Posedness for the Periodic Derivative Nonlinear Schrödinger Equation, Communications in Mathematical Physics, Volume 384 (2021) no. 2, p. 1061 | DOI:10.1007/s00220-020-03898-8
- Almost sure global well-posedness for the energy supercritical Schrödinger equations, Journal de Mathématiques Pures et Appliquées, Volume 154 (2021), p. 108 | DOI:10.1016/j.matpur.2021.08.002
- Solving the 4NLS with white noise initial data, Forum of Mathematics, Sigma, Volume 8 (2020) | DOI:10.1017/fms.2020.51
- Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation, Advances in Mathematics, Volume 347 (2019), p. 619 | DOI:10.1016/j.aim.2019.02.001
- Almost sure scattering for the energy-critical NLS with radial data below H1(R4), Communications in Partial Differential Equations, Volume 44 (2019) no. 1, p. 51 | DOI:10.1080/03605302.2018.1541904
- Probabilistic well-posedness of the mass-critical NLS with radial data below L2(Rd), Journal of Mathematical Analysis and Applications, Volume 475 (2019) no. 2, p. 1842 | DOI:10.1016/j.jmaa.2019.03.058
- A nonlinear wave equation with fractional perturbation, The Annals of Probability, Volume 47 (2019) no. 3 | DOI:10.1214/18-aop1296
- Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ³, Transactions of the American Mathematical Society, Series B, Volume 6 (2019) no. 4, p. 114 | DOI:10.1090/btran/29
- Almost sure existence of global weak solutions for incompressible MHD equations in negative-order Sobolev space, Journal of Differential Equations, Volume 263 (2017) no. 2, p. 1611 | DOI:10.1016/j.jde.2017.03.026
- Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity, Discrete and Continuous Dynamical Systems, Volume 36 (2016) no. 12, p. 6943 | DOI:10.3934/dcds.2016102
- Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on R3, Journal de Mathématiques Pures et Appliquées, Volume 105 (2016) no. 3, p. 342 | DOI:10.1016/j.matpur.2015.11.003
- On the continuous resonant equation for NLS, II: Statistical study, Analysis PDE, Volume 8 (2015) no. 7, p. 1733 | DOI:10.2140/apde.2015.8.1733
- Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, Excursions in Harmonic Analysis, Volume 4 (2015), p. 3 | DOI:10.1007/978-3-319-20188-7_1
- The Cauchy problem for the Hartree equations under random influences, Journal of Differential Equations, Volume 259 (2015) no. 10, p. 5192 | DOI:10.1016/j.jde.2015.06.021
- Local existence of solutions to randomized Gross-Pitaevskii hierarchies, Transactions of the American Mathematical Society, Volume 368 (2015) no. 3, p. 1759 | DOI:10.1090/tran/6479
- On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ^𝕕, 𝕕≥3, Transactions of the American Mathematical Society, Series B, Volume 2 (2015) no. 1, p. 1 | DOI:10.1090/btran/6
- Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator, Analysis PDE, Volume 7 (2014) no. 4, p. 997 | DOI:10.2140/apde.2014.7.997
- Two-dimensional nonlinear Schrödinger equation with random radial data, Analysis PDE, Volume 5 (2012) no. 5, p. 913 | DOI:10.2140/apde.2012.5.913
- Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L2(T), Duke Mathematical Journal, Volume 161 (2012) no. 3 | DOI:10.1215/00127094-1507400
- Remarks on Nonlinear Smoothing under Randomization for the Periodic KdV and the Cubic Szegö Equation, Funkcialaj Ekvacioj, Volume 54 (2011) no. 3, p. 335 | DOI:10.1619/fesi.54.335
Cité par 29 documents. Sources : Crossref