A well-known consequence of the ergodic decomposition theorem is that the space of invariant probability measures of a topological dynamical system, endowed with the weak∗ topology, is a non-empty metrizable Choquet simplex. We show that every non-empty metrizable Choquet simplex arises as the space of invariant probability measures on the post-critical set of a logistic map. Here, the post-critical set of a logistic map is the ω-limit set of its unique critical point. In fact we show the logistic map f can be taken in such a way that its post-critical set is a Cantor set where f is minimal, and such that each invariant probability measure on this set has zero Lyapunov exponent, and is an equilibrium state for the potential .
Une conséquence bien connue du théorème de décomposition ergodique est que l'espace des mesures de probabilité invariantes d'un système dynamique topologique est un simplexe de Choquet métrisable et non vide. On montre que tout simplexe de Choquet métrisable et non vide se réalise comme l'espace des mesures de probabilité invariantes sur l'ensemble post-critique d'une application logistique. Ici, l'ensemble post-critique d'une application logistique est l'ensemble ω-limite de son unique point critique. En effet, on démontre que l'application logistique f peut être choisie de telle façon que son ensemble post-critique soit un ensemble de Cantor où f est minimal, et tel que chaque mesure de probabilité invariante sur cet ensemble soit d'exposant de Lyapunov null, et un état d'équilibre pour le potentiel .
Keywords: Logistic map, Post-critical set, Invariant measures, Choquet simplices, Minimal Cantor system, Generalized odometer
@article{AIHPC_2010__27_1_95_0, author = {Cortez, Mar{\'\i}a Isabel and Rivera-Letelier, Juan}, title = {Choquet simplices as spaces of invariant probability measures on post-critical sets}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {95--115}, publisher = {Elsevier}, volume = {27}, number = {1}, year = {2010}, doi = {10.1016/j.anihpc.2009.07.008}, zbl = {1192.37053}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.008/} }
TY - JOUR AU - Cortez, María Isabel AU - Rivera-Letelier, Juan TI - Choquet simplices as spaces of invariant probability measures on post-critical sets JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 95 EP - 115 VL - 27 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.008/ DO - 10.1016/j.anihpc.2009.07.008 LA - en ID - AIHPC_2010__27_1_95_0 ER -
%0 Journal Article %A Cortez, María Isabel %A Rivera-Letelier, Juan %T Choquet simplices as spaces of invariant probability measures on post-critical sets %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 95-115 %V 27 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.008/ %R 10.1016/j.anihpc.2009.07.008 %G en %F AIHPC_2010__27_1_95_0
Cortez, María Isabel; Rivera-Letelier, Juan. Choquet simplices as spaces of invariant probability measures on post-critical sets. Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 1, pp. 95-115. doi : 10.1016/j.anihpc.2009.07.008. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.07.008/
[1] Compact Convex Sets and Boundary Integrals, Ergeb. Math. Grenzgeb. vol. 57, Springer-Verlag, New York (1971) | Zbl
,[2] Dynamiques associées à une échelle de numération, Acta Arith. 103 no. 1 (2002), 41-78 | EuDML | Zbl
, , ,[3] Strange adding machines, Ergodic Theory Dynam. Systems 26 no. 3 (2006), 673-682 | Zbl
, , ,[4] Adding machines and wild attractors, Ergodic Theory Dynam. Systems 17 no. 6 (1997), 1267-1287 | Zbl
, , ,[5] Measurable dynamics of S-unimodal maps of the interval, Ann. Sci. École Norm. Sup. (4) 24 no. 5 (1991), 545-573 | EuDML | Numdam | Zbl
, ,[6] Combinatorics of the kneading map, Thirty Years After Sharkovskiĭ's Theorem: New Perspectives, Murcia, 1994, World Sci. Ser. Nonlinear Sci. Ser. B Spec. Theme Issues Proc. vol. 8, World Sci. Publ., River Edge, NJ (1995), 77-87 | Zbl
,[7] Minimal Cantor systems and unimodal maps, J. Difference Equ. Appl. 9 no. 3–4 (2003), 305-318 | Zbl
,[8] Realization of a Choquet simplex as the set of invariant probability measures of a tiling system, Ergodic Theory Dynam. Systems 26 no. 5 (2006), 1417-1441 | Zbl
,[9] María Isabel Cortez, Juan Rivera-Letelier, Invariant measures of minimal post-critical sets of logistic maps, Israel. J. Math., in press, arXiv:0804.4550v1 | Zbl
[10] Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 no. 4 (1999), 953-993 | Zbl
, , ,[11] The Choquet simplex of invariant measures for minimal flows, Israel J. Math. 74 no. 2–3 (1991), 241-256 | Zbl
,[12] Survey of odometers and Toeplitz flows, Algebraic and Topological Dynamics, Contemp. Math. vol. 385, Amer. Math. Soc., Providence, RI (2005), 7-37 | Zbl
,[13] Dimensions and -Algebras, CBMS Reg. Conf. Ser. Math. vol. 46, Conference Board of the Mathematical Sciences, Washington, DC (1981) | Zbl
,[14] Bratteli–Vershik models for Cantor minimal systems: Applications to Toeplitz flows, Ergodic Theory Dynam. Systems 20 no. 6 (2000), 1687-1710 | Zbl
, ,[15] Ergodic Theory via Joinings, Math. Surveys Monogr. vol. 101, Amer. Math. Soc., Providence, RI (2003) | Zbl
,[16] Odometers and systems of numeration, Acta Arith. 70 no. 2 (1995), 103-123 | EuDML | Zbl
, , ,[17] Algebraic topology for minimal Cantor sets, Ann. Henri Poincaré 7 no. 3 (2006), 423-446 | Zbl
, ,[18] Topological orbit equivalence and -crossed products, J. Reine Angew. Math. 469 (1995), 51-111 | EuDML | Zbl
, , ,[19] A new proof that every Polish space is the extreme boundary of a simplex, Bull. London Math. Soc. 7 (1975), 97-100 | Zbl
,[20] The topological entropy of the transformation , Monatsh. Math. 90 no. 2 (1980), 117-141 | EuDML | Zbl
,[21] Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 no. 6 (1992), 827-864 | Zbl
, , ,[22] Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems 1 no. 1 (1981), 77-93 | Zbl
,[23] Quelques propriétés ergodiques des applications rationnelles, C. R. Acad. Sci. Paris Sér. I Math. 299 no. 1 (1984), 37-40 | Zbl
,[24] Banach spaces whose duals are spaces and their representing matrices, Acta Math. 126 (1971), 165-193 | Zbl
, ,[25] The Hausdorff dimension of invariant probabilities of rational maps, Dynamical Systems, Valparaiso, 1986, Lecture Notes in Math. vol. 1331, Springer, Berlin (1988), 86-117 | Zbl
,[26] Strong orbit realization for minimal homeomorphisms, J. Anal. Math. 71 (1997), 103-133 | Zbl
,[27] Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 no. 1 (1993), 309-317 | Zbl
,Cited by Sources: