We consider the family of Hénon maps in the plane and show that the SRB measures vary continuously in the weak∗ topology within the set of Benedicks–Carleson parameters.
Keywords: Hénon attractor, SRB measure, Statistical stability
@article{AIHPC_2010__27_2_595_0, author = {Alves, Jos\'e F. and Carvalho, Maria and Freitas, Jorge Milhazes}, title = {Statistical stability for {H\'enon} maps of the {Benedicks{\textendash}Carleson} type}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {595--637}, publisher = {Elsevier}, volume = {27}, number = {2}, year = {2010}, doi = {10.1016/j.anihpc.2009.09.009}, mrnumber = {2595193}, zbl = {1205.37040}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2009.09.009/} }
TY - JOUR AU - Alves, José F. AU - Carvalho, Maria AU - Freitas, Jorge Milhazes TI - Statistical stability for Hénon maps of the Benedicks–Carleson type JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 595 EP - 637 VL - 27 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2009.09.009/ DO - 10.1016/j.anihpc.2009.09.009 LA - en ID - AIHPC_2010__27_2_595_0 ER -
%0 Journal Article %A Alves, José F. %A Carvalho, Maria %A Freitas, Jorge Milhazes %T Statistical stability for Hénon maps of the Benedicks–Carleson type %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 595-637 %V 27 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2009.09.009/ %R 10.1016/j.anihpc.2009.09.009 %G en %F AIHPC_2010__27_2_595_0
Alves, José F.; Carvalho, Maria; Freitas, Jorge Milhazes. Statistical stability for Hénon maps of the Benedicks–Carleson type. Annales de l'I.H.P. Analyse non linéaire, Volume 27 (2010) no. 2, pp. 595-637. doi : 10.1016/j.anihpc.2009.09.009. http://archive.numdam.org/articles/10.1016/j.anihpc.2009.09.009/
[1] Statistical stability for robust classes of maps with non-uniform expansion, Ergodic Theory Dynam. Systems 22 (2002), 1-32 | MR | Zbl
, ,[2] On iterations of on , Ann. of Math. 122 (1985), 1-25 | MR | Zbl
, ,[3] The dynamics of the Hénon map, Ann. of Math. 133 (1991), 73-169 | MR | Zbl
, ,[4] Random perturbations and statistical properties of Hénon-like maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 23 no. 5 (2006), 713-752 | EuDML | Numdam | MR | Zbl
, ,[5] Solution of the basin problem for Hénon-like attractors, Invent. Math. 143 (2001), 375-434 | MR | Zbl
, ,[6] Sinai–Bowen–Ruelle measures for certain Hénon maps, Invent. Math. 112 (1993), 541-576 | EuDML | MR | Zbl
, ,[7] Markov extensions and decay of correlations for certain Hénon maps, Astérisque 261 (2000), 13-56 | Numdam | MR | Zbl
, ,[8] Dynamics Beyond Uniform Hyperbolicity, Springer-Verlag (2005) | MR | Zbl
, , ,[9] Equilibrium States and Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. vol. 470, Springer-Verlag (1975) | MR | Zbl
,[10] On the abundance of aperiodic behavior for maps on the interval, Comm. Math. Phys. 73 (1980), 115-160 | MR | Zbl
, ,[11] On the abundance of aperiodic behavior for maps on the interval, Bull. Amer. Math. Soc. 3 no. 1 (1980), 699-700 | MR | Zbl
, ,[12] Positive Lyapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems 3 (1983), 13-46 | MR | Zbl
, ,[13] Continuity of SRB measure and entropy for Benedicks–Carleson quadratic maps, Nonlinearity 18 (2005), 831-854 | MR | Zbl
,[14] A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976), 69-77 | MR | Zbl
,[15] Differential Equations, Dynamical Systems and Linear Algebra, Academic Press Inc. (1974) | MR | Zbl
, ,[16] Absolutely continuous invariant measures for one parameter families of one-dimensional maps, Comm. Math. Phys. 81 (1981), 39-88 | MR | Zbl
,[17] Parameter exclusions in Hénon-like systems, Russian Math. Surveys 58 (2003), 1053-1092 | Zbl
, ,[18] Abundance of strange attractors, Acta Math. 171 (1993), 1-71 | MR | Zbl
, ,[19] Diffeomorphisms with infinitely many sinks, Topology 13 (1974), 9-18 | MR | Zbl
,[20] The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Publ. Math. Inst. Hautes Études Sci. 50 (1979), 101-152 | EuDML | Numdam | MR | Zbl
,[21] Families of invariant manifolds corresponding to nonzero characteristic exponents, Math. USSR Izv. 10 (1978), 1261-1305 | Zbl
,[22] Ergodic theory of differentiable dynamical systems, Publ. Math. Inst. Hautes Études Sci. 50 (1979), 27-58 | EuDML | Numdam | MR | Zbl
,[23] Regularity and other properties of absolutely continuous invariant measures for the quadratic family, Comm. Math. Phys. 150 no. 2 (1992), 217-236 | MR | Zbl
, ,[24] Unfolding of chaotic unimodal maps and the parameter dependence of natural measures, Nonlinearity 14 no. 2 (2001), 323-337 | MR | Zbl
,[25] On continuity of Bowen–Ruelle–Sinai measures in families of one dimensional maps, Comm. Math. Phys. 177 no. 1 (1996), 1-11 | MR | Zbl
,[26] On the approximation of Hénon-like attractors by homoclinic tangencies, Ergodic Theory Dynam. Systems 15 (1995), 1223-1229 | MR | Zbl
,[27] Hénon attractors: SRB measures and Dirac measures for sinks, 1st International Conference on Dynamical Systems – A Tribute to Ricardo Mañé, Montevideo, Uruguay, 1995, Pitman Res. Notes Math. Ser. vol. 362, Longman, Harlow (1996), 214-219 | Zbl
,[28] Strange attractors with one direction of instability, Comm. Math. Phys. 218 (2001), 1-97 | MR | Zbl
, ,[29] Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. 147 (1998), 585-650 | MR | Zbl
,Cited by Sources: