Nous considérons des problèmes de Neumann pour des équations elliptiques non linéaires dans des domaines éventuellement non réguliers et avec des données peu régulières. Un équilibre entre l'intégrabilité de la donnée et l'(ir)régularité du domaine nous permet d'obtenir l'existence, l'unicité et la dépendance continue de solutions généralisées. L'irrégularité du domaine est décrite par des inégalités « isocapacitaires ». Nous donnons aussi des applications à certaines classes de domaines.
Non-linear elliptic Neumann problems, possibly in irregular domains and with data affected by low integrability properties, are taken into account. Existence, uniqueness and continuous dependence on the data of generalized solutions are established under a suitable balance between the integrability of the datum and the (ir)regularity of the domain. The latter is described in terms of isocapacitary inequalities. Applications to various classes of domains are also presented.
Mots-clés : Non-linear elliptic equations, Neumann problems, Generalized solutions, A priori estimates, Stability estimates, Capacity, Perimeter, Rearrangements
@article{AIHPC_2010__27_4_1017_0, author = {Alvino, Angelo and Cianchi, Andrea and Maz'ya, Vladimir G. and Mercaldo, Anna}, title = {Well-posed elliptic {Neumann} problems involving irregular data and domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1017--1054}, publisher = {Elsevier}, volume = {27}, number = {4}, year = {2010}, doi = {10.1016/j.anihpc.2010.01.010}, mrnumber = {2659156}, zbl = {1200.35105}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2010.01.010/} }
TY - JOUR AU - Alvino, Angelo AU - Cianchi, Andrea AU - Maz'ya, Vladimir G. AU - Mercaldo, Anna TI - Well-posed elliptic Neumann problems involving irregular data and domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 1017 EP - 1054 VL - 27 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2010.01.010/ DO - 10.1016/j.anihpc.2010.01.010 LA - en ID - AIHPC_2010__27_4_1017_0 ER -
%0 Journal Article %A Alvino, Angelo %A Cianchi, Andrea %A Maz'ya, Vladimir G. %A Mercaldo, Anna %T Well-posed elliptic Neumann problems involving irregular data and domains %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 1017-1054 %V 27 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2010.01.010/ %R 10.1016/j.anihpc.2010.01.010 %G en %F AIHPC_2010__27_4_1017_0
Alvino, Angelo; Cianchi, Andrea; Maz'ya, Vladimir G.; Mercaldo, Anna. Well-posed elliptic Neumann problems involving irregular data and domains. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 4, pp. 1017-1054. doi : 10.1016/j.anihpc.2010.01.010. https://www.numdam.org/articles/10.1016/j.anihpc.2010.01.010/
[1] Formule di maggiorazione e regolarizzazione per soluzioni di equazioni ellittiche del secondo ordine in un caso limite, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 62 (1977), 335-340 | Zbl
,[2] Convex symmetrization and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 275-293 | EuDML | Numdam | MR | Zbl
, , , ,[3] Comparison results for elliptic and parabolic equations via Schwarz symmetrization, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 37-65 | EuDML | Numdam | MR | Zbl
, , ,[4] Elliptic boundary value problems: comparison results via symmetrization, Ricerche Mat. 51 (2002), 341-355 | MR | Zbl
, , ,
[5] Nonlinear elliptic problems with
[6] Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford (2000) | MR | Zbl
, , ,
[7] Quasi-linear elliptic and parabolic equations in
[8] Nonlinear and non-coercive elliptic problems with integrable data, Adv. Math. Sci. Appl. 16 (2006), 275-297 | MR | Zbl
, ,
[9] An
[10] Interpolation of Operators, Academic Press, Boston (1988) | MR | Zbl
, ,[11] Neumann problems: comparison results, Rend. Accad. Sci. Fis. Mat. Napoli 57 (1990), 41-58 | MR | Zbl
,[12] Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149-169 | MR | Zbl
, ,[13] Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations 17 (1992), 641-655 | MR | Zbl
, ,[14] Geometric Inequalities, Springer-Verlag, Berlin (1988) | MR | Zbl
, ,
[15] On the Neumann problem with
[16] Conformal deformation of metrics on
[17] A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis, Princeton Univ. Press, Princeton (1970), 195-199 | MR | Zbl
,[18] On relative isoperimetric inequalities in the plane, Boll. Unione Mat. Ital. Sez. B 3 (1989), 289-326 | MR | Zbl
,[19] Elliptic equations on manifolds and isoperimetric inequalities, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 213-227 | MR | Zbl
,[20] Moser–Trudinger inequalities without boundary conditions and isoperimetric problems, Indiana Univ. Math. J. 54 (2005), 669-705 | MR | Zbl
,[21] On weighted Poincaré inequalities, Math. Nachr. 180 (1996), 15-41 | MR | Zbl
, , ,[22] Neumann problems and isocapacitary inequalities, J. Math. Pures Appl. 89 (2008), 71-105 | MR | Zbl
, ,[23] A. Cianchi, V.G. Maz'ya, Estimates for solutions to the Schrödinger equation under Neumann boundary conditions, in preparation
[24] Methods of Mathematical Physics, John Wiley & Sons, New York (1953) | Zbl
, ,
[25] Approximated solutions of equations with
[26] G. Dal Maso, Notes on capacity theory, manuscript
[27] Some properties of reachable solutions of nonlinear elliptic equations with measure data, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 25 (1997), 375-396 | EuDML | Numdam | MR | Zbl
, ,[28] Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 28 (1999), 741-808 | EuDML | Numdam | MR | Zbl
, , , ,[29] Trace imbeddings for T-sets and application to Neumann–Dirichlet problems with measures included in the boundary data, Ann. Fac. Sci. Toulouse Math. 5 (1996), 443-470 | EuDML | Numdam | MR | Zbl
, , ,[30] Nonlinear elliptic equations with measure data, Potential Anal. 4 (1995), 185-203 | MR | Zbl
,[31] Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right-hand side, J. Reine Angew. Math. 520 (2000), 1-35 | MR | Zbl
, , ,[32] Solving convection–diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method, Adv. Differential Equations 5 (2000), 1341-1396 | MR | Zbl
,[33] Noncoercive convection–diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations 34 (2009), 413-434 | MR | Zbl
, ,[34] Symmetrization for degenerate Neumann problems, Rend. Accad. Sci. Fis. Mat. Napoli 60 (1993), 27-46 | MR | Zbl
,[35] Symmetrization in a Neumann problem, Matematiche 41 (1986), 67-78 | MR | Zbl
,
[36] Existence and uniqueness results for solutions of nonlinear equations with right-hand side in
[37] Inégalités isopérimétriques et analitiques sur les variétés riemanniennes, Asterisque 163 (1988), 31-91 | MR
,[38] Sharp estimates for the norms of Hardy-type operators on the cones of quasimonotone functions, Proc. Steklov Inst. Math. 232 (2001), 1-29 | MR | Zbl
,[39] Inverting the p-harmonic operator, Manuscripta Math. 92 (1997), 249-258 | EuDML | MR | Zbl
, , ,[40] Isoperimetric inequalities and imbedding theorems in irregular domains, J. London Math. Soc. 58 (1998), 425-450 | MR
, ,[41] Weighted inequalities for monotone and concave functions, Studia Math. 116 (1995), 133-165 | EuDML | MR | Zbl
, ,[42] Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math. vol. 1150, Springer-Verlag, Berlin (1985) | MR | Zbl
,[43] On a comparison theorem via symmetrisation, Proc. Roy. Soc. Edinburgh Sect. A 119 (1991), 159-167 | MR | Zbl
,[44] Symmetrization & Applications, Ser. Anal. vol. 3, World Scientific, Hackensack (2006) | MR | Zbl
,[45] Sobolev inequalities on sets with irregular boundaries, Z. Anal. Anwend. 19 (2000), 369-380 | EuDML | MR | Zbl
, ,[46] Embedding of Sobolev spaces on Hölder domains, Mat. Inst. Steklova 227 (1999), 170-179, Proc. Steklov Inst. Math. 227 (1999), 163-172 | MR | Zbl
,[47] P.-L. Lions, F. Murat, Sur les solutions renormalisées d'équations elliptiques non linéaires, manuscript
[48] Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc. 109 (1990), 477-485 | MR | Zbl
, ,[49] Symmetrization in Neumann problems, Appl. Anal. 9 (1979), 247-256 | MR | Zbl
, ,[50] A priori bounds in non-linear Neumann problems, Boll. Un. Mat. Ital. B 16 (1979), 1144-1153 | MR | Zbl
, ,[51] Fine Regularity of Solutions of Elliptic Partial Differential Equations, Amer. Math. Soc., Providence (1997) | MR | Zbl
, ,[52] Classes of regions and imbedding theorems for function spaces, Dokl. Akad. Nauk 133 (1960), 527-530, Soviet Math. Dokl. 1 (1960), 882-885 | MR | Zbl
,[53] Some estimates of solutions of second-order elliptic equations, Dokl. Akad. Nauk 137 (1961), 1057-1059, Soviet Math. Dokl. 2 (1961), 413-415 | MR | Zbl
,[54] On weak solutions of the Dirichlet and Neumann problems, Tr. Mosk. Mat. Obs. 20 (1969), 137-172, Trans. Moscow Math. Soc. 20 (1969), 135-172 | MR | Zbl
,[55] Sobolev Spaces, Springer-Verlag, Berlin (1985) | MR | Zbl
,[56] Differentiable Functions on Bad Domains, World Scientific, Singapore (1997) | MR | Zbl
, ,[57] Gradient estimates below the duality exponent, Math. Ann. 346 (2010), 571-627 | MR | Zbl
,[58] F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Laboratoire d'Analyse Numérique de l'Université Paris VI, 1993, preprint 93023
[59] Équations elliptiques non linéaires avec second membre
[60] Some results for non-linear elliptic problems with mixed boundary conditions, Ann. Mat. Pura Appl. 184 (2005), 495-531 | MR | Zbl
,[61] Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure, Ann. Fac. Sci. Toulouse Math. 6 (1997), 297-318 | EuDML | Numdam | MR
,[62] Pathological solutions of elliptic partial differential equations, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 18 (1964), 385-387 | EuDML | Numdam | MR | Zbl
,[63] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier 15 (1965), 189-258 | EuDML | Numdam | MR | Zbl
,[64] Elliptic equations and rearrangements, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 3 (1976), 697-718 | EuDML | Numdam | MR | Zbl
,[65] Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl. 120 (1979), 159-184 | MR | Zbl
,[66] Symmetrization methods for partial differential equations, Boll. Unione Mat. Ital. Sez. B 4 (2000), 601-634 | EuDML | MR | Zbl
,[67] Symmetrization and mass comparison for degenerate nonlinear parabolic and related elliptic equations, Adv. Nonlinear Stud. 5 (2005), 87-131 | MR | Zbl
,[68] Nonlinear Functional Analysis and Its Applications, vol. II/B, Springer-Verlag, New York (1990) | MR
,[69] Weakly Differentiable Functions, Springer-Verlag, New York (1989) | MR | Zbl
,- Neumann problems for nonlinear elliptic equations with lower order terms, Nonlinear Analysis, Volume 250 (2025), p. 113626 | DOI:10.1016/j.na.2024.113626
- Bounds for eigenfunctions of the Neumann p-Laplacian on noncompact Riemannian manifolds, Advances in Calculus of Variations, Volume 17 (2024) no. 2, p. 319 | DOI:10.1515/acv-2022-0014
- Finite volume scheme and renormalized solutions for nonlinear elliptic Neumann problem with
data, Calcolo, Volume 61 (2024) no. 3 | DOI:10.1007/s10092-024-00602-3 - Sobolev embeddings into Orlicz spaces and isocapacitary inequalities, Transactions of the American Mathematical Society (2022) | DOI:10.1090/tran/8689
- Gradient estimates for problems with Orlicz growth, Nonlinear Analysis, Volume 194 (2020), p. 111364 | DOI:10.1016/j.na.2018.10.008
- Optimal second-order regularity for the p-Laplace system, Journal de Mathématiques Pures et Appliquées, Volume 132 (2019), p. 41 | DOI:10.1016/j.matpur.2019.02.015
- Elliptic problems with growth in nonreflexive Orlicz spaces and with measure or L1 data, Journal of Mathematical Analysis and Applications, Volume 479 (2019) no. 1, p. 185 | DOI:10.1016/j.jmaa.2019.06.022
- Inverse problem for a class of nonlinear elliptic equations with entropy solution, Nonlinear Analysis: Real World Applications, Volume 46 (2019), p. 137 | DOI:10.1016/j.nonrwa.2018.09.008
- Gradient estimates via rearrangements for solutions of some Schrödinger equations, Analysis and Applications, Volume 16 (2018) no. 03, p. 339 | DOI:10.1142/s0219530517500142
- Second-Order Two-Sided Estimates in Nonlinear Elliptic Problems, Archive for Rational Mechanics and Analysis, Volume 229 (2018) no. 2, pp. 569-599 | DOI:10.1007/s00205-018-1223-7
- Pointwise Calderón–Zygmund gradient estimates for the p-Laplace system, Journal de Mathématiques Pures et Appliquées, Volume 114 (2018), p. 146 | DOI:10.1016/j.matpur.2017.07.011
- Potential estimates for the p-Laplace system with data in divergence form, Journal of Differential Equations, Volume 265 (2018) no. 1, pp. 478-499 | DOI:10.1016/j.jde.2018.02.038
- Quasilinear elliptic equations on noncompact Riemannian manifolds, Journal of Functional Analysis, Volume 273 (2017) no. 11, p. 3426 | DOI:10.1016/j.jfa.2017.08.018
- Quasilinear elliptic problems with general growth and merely integrable, or measure, data, Nonlinear Analysis, Volume 164 (2017), p. 189 | DOI:10.1016/j.na.2017.08.007
- Global boundedness of the gradient for a class of Schrödinger equations, Nonlinear Analysis: Theory, Methods Applications, Volume 152 (2017), p. 102 | DOI:10.1016/j.na.2017.01.002
- Symmetrization for fractional Neumann problems, Nonlinear Analysis: Theory, Methods Applications, Volume 147 (2016), p. 1 | DOI:10.1016/j.na.2016.08.029
- Gradient estimates and comparison principle for some nonlinear elliptic equations, Communications on Pure and Applied Analysis, Volume 14 (2015) no. 3, p. 897 | DOI:10.3934/cpaa.2015.14.897
- Neumann problems for nonlinear elliptic equations with L1 data, Journal of Differential Equations, Volume 259 (2015) no. 3, pp. 898-924 | DOI:10.1016/j.jde.2015.02.031
- Global gradient estimates in elliptic problems under minimal data and domain regularity, Communications on Pure and Applied Analysis, Volume 14 (2014) no. 1, p. 285 | DOI:10.3934/cpaa.2015.14.285
- Boundedness of solutions to the Schrödinger equation under Neumann boundary conditions, Journal de Mathématiques Pures et Appliquées, Volume 98 (2012) no. 6, p. 654 | DOI:10.1016/j.matpur.2012.05.007
- Nonlinear Aspects of Calderón-Zygmund Theory, Jahresbericht der Deutschen Mathematiker-Vereinigung, Volume 112 (2010) no. 3, p. 159 | DOI:10.1365/s13291-010-0004-5
Cité par 21 documents. Sources : Crossref, NASA ADS