We consider the Zakharov system in two space dimension with periodic boundary condition:
Nous considérons le système de Zakharov dans lʼespace à deux dimensions avec la condition périodique au bord :
Keywords: Zakharov system, Blow-up solution, Modified energy, Minimal mass blow-up solution
@article{AIHPC_2013__30_5_791_0, author = {Kishimoto, Nobu and Maeda, Masaya}, title = {Construction of blow-up solutions for {Zakharov} system on $ {\mathbb{T}}^{2}$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {791--824}, publisher = {Elsevier}, volume = {30}, number = {5}, year = {2013}, doi = {10.1016/j.anihpc.2012.09.003}, mrnumber = {3103171}, zbl = {06295442}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2012.09.003/} }
TY - JOUR AU - Kishimoto, Nobu AU - Maeda, Masaya TI - Construction of blow-up solutions for Zakharov system on $ {\mathbb{T}}^{2}$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2013 SP - 791 EP - 824 VL - 30 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2012.09.003/ DO - 10.1016/j.anihpc.2012.09.003 LA - en ID - AIHPC_2013__30_5_791_0 ER -
%0 Journal Article %A Kishimoto, Nobu %A Maeda, Masaya %T Construction of blow-up solutions for Zakharov system on $ {\mathbb{T}}^{2}$ %J Annales de l'I.H.P. Analyse non linéaire %D 2013 %P 791-824 %V 30 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2012.09.003/ %R 10.1016/j.anihpc.2012.09.003 %G en %F AIHPC_2013__30_5_791_0
Kishimoto, Nobu; Maeda, Masaya. Construction of blow-up solutions for Zakharov system on $ {\mathbb{T}}^{2}$. Annales de l'I.H.P. Analyse non linéaire, Volume 30 (2013) no. 5, pp. 791-824. doi : 10.1016/j.anihpc.2012.09.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2012.09.003/
[1] Sobolev Spaces, Pure Appl. Math. (Amst.) vol. 140, Elsevier/Academic Press, Amsterdam (2003) | MR | Zbl
, ,[2] Lower bounds for the minimal periodic blow-up solutions of critical nonlinear Schrödinger equation, Differential Integral Equations 15 (2002), 749-768 | MR | Zbl
,[3] On the 2D Zakharov system with -Schrödinger data, Nonlinearity 22 (2009), 1063-1089 | MR | Zbl
, , , ,[4] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), 107-156 | EuDML | MR | Zbl
,[5] On wellposedness of the Zakharov system, Int. Math. Res. Not. (1996), 515-546 | MR | Zbl
, ,[6] Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal. 13 (2003), 1-19 | MR | Zbl
, , ,[7] Semilinear Schrödinger Equations, Courant Lect. Notes Math. vol. 10, New York University Courant Institute of Mathematical Sciences, New York (2003) | MR | Zbl
,[8] The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal. 14 (1990), 807-836 | MR | Zbl
, ,[9] Optimal -Riemannian Gagliardo–Nirenberg inequalities, Math. Z. 258 (2008), 851-873 | MR | Zbl
, ,[10] Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, arXiv:1104.1114v2 | MR | Zbl
,[11] On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997), 384-436 | MR | Zbl
, , ,[12] Existence of self-similar blow-up solutions for Zakharov equation in dimension two. I, Comm. Math. Phys. 160 (1994), 173-215 | MR | Zbl
, ,[13] Concentration properties of blow-up solutions and instability results for Zakharov equation in dimension two. II, Comm. Math. Phys. 160 (1994), 349-389 | MR | Zbl
, ,[14] On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (1977), 1794-1797 | MR | Zbl
,[15] Blow up in several points for the nonlinear Schrödinger equation on a bounded domain, Differential Integral Equations 24 (2011), 505-517 | MR | Zbl
,[16] Linear Topological Spaces, Grad. Texts in Math. vol. 36, Springer-Verlag, New York (1976) | MR
, ,[17] N. Kishimoto, Local well-posedness for the Zakharov system on multidimensional torus, J. Anal. Math., in press, arXiv:1109.3527v1. | MR
[18] On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map, J. Differential Equations 245 (2008), 2627-2659 | MR | Zbl
,[19] Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), 591-642 | MR | Zbl
, ,[20] On universality of blow-up profile for critical nonlinear Schrödinger equation, Invent. Math. 156 (2004), 565-672 | MR | Zbl
, ,[21] On one blow up point solutions to the critical nonlinear Schrödinger equation, J. Hyperbolic Differ. Equ. 2 (2005), 919-962 | MR | Zbl
, ,[22] Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), 675-704 | MR | Zbl
, ,[23] The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math. (2) 161 (2005), 157-222 | MR | Zbl
, ,[24] On a sharp lower bound on the blow-up rate for the critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), 37-90 | MR | Zbl
, ,[25] concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations 84 (1990), 205-214 | MR | Zbl
, ,[26] Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math. 52 (1999), 193-270 | MR
,[27] Blow-up of solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary condition, Functional-Analytic Methods for Partial Differential Equations, Tokyo, 1989, Lecture Notes in Math. vol. 1450, Springer, Berlin (1990), 236-251 | MR
, ,[28] Blow-up of solution for the nonlinear Schrödinger equation, J. Differential Equations 92 (1991), 317-330 | MR | Zbl
, ,[29] Blow-up of solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc. 111 (1991), 487-496 | MR | Zbl
, ,[30] Existence and smoothing effect of solutions for the Zakharov equations, Publ. Res. Inst. Math. Sci. 28 (1992), 329-361 | MR | Zbl
, ,[31] Nonlinear wave collapse and strong turbulence, Rev. Modern Phys. 69 (1997), 507-573
,[32] Refined energy inequality with application to well-posedness for the fourth order nonlinear Schrodinger type equation on torus, arXiv:1202.3211v1 | MR | Zbl
,[33] The nonlinear Schrödinger equation, Self-Focusing and Wave Collapse, Appl. Math. Sci. vol. 139, Springer-Verlag, New York (1999) | MR | Zbl
, ,[34] On 2D nonlinear Schrödinger equations with data on , J. Funct. Anal. 182 (2001), 427-442 | MR | Zbl
, ,[35] Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/1983), 567-576 | MR | Zbl
,[36] Collapse of Langmuir waves, Sov. Phys. JETP 35 (1972), 908-914 | MR
,Cited by Sources: