On the weak solutions to the equations of a compressible heat conducting gas
Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 1, pp. 225-243.

We consider the weak solutions to the Euler–Fourier system describing the motion of a compressible heat conducting gas. Employing the method of convex integration, we show that the problem admits infinitely many global-in-time weak solutions for any choice of smooth initial data. We also show that for any initial distribution of the density and temperature, there exists an initial velocity such that the associated initial-value problem possesses infinitely many solutions that conserve the total energy.

@article{AIHPC_2015__32_1_225_0,
     author = {Chiodaroli, Elisabetta and Feireisl, Eduard and Kreml, Ond\v{r}ej},
     title = {On the weak solutions to the equations of a compressible heat conducting gas},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {225--243},
     publisher = {Elsevier},
     volume = {32},
     number = {1},
     year = {2015},
     doi = {10.1016/j.anihpc.2013.11.005},
     zbl = {1315.35160},
     mrnumber = {3303948},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2013.11.005/}
}
TY  - JOUR
AU  - Chiodaroli, Elisabetta
AU  - Feireisl, Eduard
AU  - Kreml, Ondřej
TI  - On the weak solutions to the equations of a compressible heat conducting gas
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2015
DA  - 2015///
SP  - 225
EP  - 243
VL  - 32
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2013.11.005/
UR  - https://zbmath.org/?q=an%3A1315.35160
UR  - https://www.ams.org/mathscinet-getitem?mr=3303948
UR  - https://doi.org/10.1016/j.anihpc.2013.11.005
DO  - 10.1016/j.anihpc.2013.11.005
LA  - en
ID  - AIHPC_2015__32_1_225_0
ER  - 
%0 Journal Article
%A Chiodaroli, Elisabetta
%A Feireisl, Eduard
%A Kreml, Ondřej
%T On the weak solutions to the equations of a compressible heat conducting gas
%J Annales de l'I.H.P. Analyse non linéaire
%D 2015
%P 225-243
%V 32
%N 1
%I Elsevier
%U https://doi.org/10.1016/j.anihpc.2013.11.005
%R 10.1016/j.anihpc.2013.11.005
%G en
%F AIHPC_2015__32_1_225_0
Chiodaroli, Elisabetta; Feireisl, Eduard; Kreml, Ondřej. On the weak solutions to the equations of a compressible heat conducting gas. Annales de l'I.H.P. Analyse non linéaire, Volume 32 (2015) no. 1, pp. 225-243. doi : 10.1016/j.anihpc.2013.11.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2013.11.005/

[1] T. Alazard, Low Mach number flows and combustion, SIAM J. Math. Anal. 38 no. 4 (2006), 1186 -1213 | MR | Zbl

[2] T. Alazard, Low Mach number limit of the full Navier–Stokes equations, Arch. Ration. Mech. Anal. 180 (2006), 1 -73 | MR | Zbl

[3] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis, Friedrichroda, 1992, Teubner-Texte Math. vol. 133 , Teubner, Stuttgart (1993), 9 -126 | MR | Zbl

[4] S. Bianchini, A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. Math. (2) 161 no. 1 (2005), 223 -342 | MR | Zbl

[5] A. Bressan, Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, Oxford University Press, Oxford (2000) | MR | Zbl

[6] A. Bressan, F. Flores, On total differential inclusions, Rend. Semin. Mat. Univ. Padova 92 (1994), 9 -16 | EuDML | Numdam | MR | Zbl

[7] A. Cellina, On the differential inclusion x ' [-1,1] , Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 69 (1980), 1 -6 | MR | Zbl

[8] E. Chiodaroli, A counterexample to well-posedness of entropy solutions to the compressible Euler system, Preprint, 2012. | MR

[9] B. Dacorogna, P. Marcellini, General existence theorems for Hamilton–Jacobi equations in the scalar and vectorial cases, Acta Math. 178 (1997), 1 -37 | MR | Zbl

[10] C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin (2000) | MR | Zbl

[11] C. De Lellis, L. Székelyhidi, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195 no. 1 (2010), 225 -260 | MR | Zbl

[12] C. De Lellis, L. Székelyhidi, The h-principle and the equations of fluid dynamics, Bull. Am. Math. Soc. (N.S.) 49 no. 3 (2012), 347 -375 | MR | Zbl

[13] E. Feireisl, Relative entropies in thermodynamics of complete fluid systems, Discrete Contin. Dyn. Syst., Ser. A 32 (2012), 3059 -3080 | MR | Zbl

[14] E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser Verlag, Basel (2009) | MR | Zbl

[15] E. Feireisl, A. Novotný, Weak-strong uniqueness property for the full Navier–Stokes–Fourier system, Arch. Ration. Mech. Anal. 204 (2012), 683 -706 | MR | Zbl

[16] B. Kirchheim, Rigidity and geometry of microstructures, http://www.mis.mpg.de/publications/other-series/ln/~lecturenote-1603.html (2003)

[17] N.V. Krylov, Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms, J. Funct. Anal. 250 no. 2 (2007), 521 -558 | MR | Zbl

[18] T.P. Liu, Admissible solutions of hyperbolic conservation laws, Mem. Am. Math. Soc. 30 no. 240 (1981) | MR | Zbl

[19] S. Müller, V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity, Ann. Math. (2) 157 no. 3 (2003), 715 -742 | MR | Zbl

[20] D. Serre, Local existence for viscous system of conservation laws: H s -data with s>1+d/2 , Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena, Contemp. Math. vol. 526 , Amer. Math. Soc., Providence, RI (2010), 339 -358 | Zbl

[21] D. Serre, The structure of dissipative viscous system of conservation laws, Physica D 239 no. 15 (2010), 1381 -1386 | MR | Zbl

[22] A. Shnirelman, Weak solutions of incompressible Euler equations, Handbook of Mathematical Fluid Dynamics, vol. II, North-Holland, Amsterdam (2003), 87 -116 | MR | Zbl

[23] C.H. Wilcox, Sound Propagation in Stratified Fluids, Appl. Math. Ser. vol. 50 , Springer-Verlag, Berlin (1984) | MR | Zbl

Cited by Sources: