On the planar Schrödinger–Poisson system
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 169-197.

We develop a variational framework to detect high energy solutions of the planar Schrödinger–Poisson system

{Δu+a(x)u+γwu=0,Δw=u2in R2
with a positive function aL(R2) and γ>0. In particular, we deal with the periodic setting where the corresponding functional is invariant under Z2-translations and therefore fails to satisfy a global Palais–Smale condition. The key tool is a surprisingly strong compactness condition for Cerami sequences which is not available for the corresponding problem in higher space dimensions. In the case where the external potential a is a positive constant, we also derive, as a special case of a more general result, the existence of nonradial solutions (u,w) such that u has arbitrarily many nodal domains. Finally, in the case where a is constant, we also show that solutions of the above problem with u>0 in R2 and w(x) as |x| are radially symmetric up to translation. Our results are also valid for a variant of the above system containing a local nonlinear term in u in the first equation.

DOI : 10.1016/j.anihpc.2014.09.008
Classification : 35J50, 35Q40
Mots clés : Schrödinger–Poisson system, Logarithmic convolution potential, Standing wave solutions
@article{AIHPC_2016__33_1_169_0,
     author = {Cingolani, Silvia and Weth, Tobias},
     title = {On the planar {Schr\"odinger{\textendash}Poisson} system},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {169--197},
     publisher = {Elsevier},
     volume = {33},
     number = {1},
     year = {2016},
     doi = {10.1016/j.anihpc.2014.09.008},
     mrnumber = {3436430},
     zbl = {1331.35126},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2014.09.008/}
}
TY  - JOUR
AU  - Cingolani, Silvia
AU  - Weth, Tobias
TI  - On the planar Schrödinger–Poisson system
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 169
EP  - 197
VL  - 33
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2014.09.008/
DO  - 10.1016/j.anihpc.2014.09.008
LA  - en
ID  - AIHPC_2016__33_1_169_0
ER  - 
%0 Journal Article
%A Cingolani, Silvia
%A Weth, Tobias
%T On the planar Schrödinger–Poisson system
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 169-197
%V 33
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2014.09.008/
%R 10.1016/j.anihpc.2014.09.008
%G en
%F AIHPC_2016__33_1_169_0
Cingolani, Silvia; Weth, Tobias. On the planar Schrödinger–Poisson system. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 1, pp. 169-197. doi : 10.1016/j.anihpc.2014.09.008. http://archive.numdam.org/articles/10.1016/j.anihpc.2014.09.008/

[1] Ackermann, N. On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z., Volume 248 (2004), pp. 248–443 | DOI | MR | Zbl

[2] Agmon, S., Math. Notes, Volume vol. 29, Princeton University Press, Princeton, NJ (1982), pp. 118 | MR | Zbl

[3] Ambrosetti, A.; Ruiz, D. Multiple bound state for the Schödinger–Poisson problem, Commun. Contemp. Math., Volume 10 (2008) no. 3, pp. 391–404 | DOI | MR | Zbl

[4] Azzollini, A.; Pomponio, A. Ground state solutions for the nonlinear Schrödinger–Maxwell equations, J. Math. Anal. Appl., Volume 345 (2008), pp. 90–108 | DOI | MR | Zbl

[5] Bartsch, T.; Weth, T. Three nodal solutions of singularly perturbed elliptic equations on domains without topology, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 3, pp. 259–281 | DOI | Numdam | MR | Zbl

[6] Bellazzini, J.; Jeanjean, L.; Luo, T. Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations, Proc. Lond. Math. Soc. (2013), pp. 303–339 | DOI | MR | Zbl

[7] Benci, V.; Fortunato, D. An eigenvalue problem for the Schrödinger–Maxwell equations, Topol. Methods Nonlinear Anal., Volume 11 (1998), pp. 283–293 | MR | Zbl

[8] Catto, I.; Le Bris, C.; Lions, P.-L. On some periodic Hartree-type models for crystals, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 19 (2002), pp. 143–190 | Numdam | MR | Zbl

[9] I. Catto, O. Sanchez, J. Soler, Nondispersive dynamics stemming from Xα corrections to the Schrödinger–Poisson systems.

[10] Cerami, G.; Passaseo, D. The effect of concentrating potentials in some singularly perturbed problems, Calc. Var. Partial Differ. Equ., Volume 17 (2003) no. 3, pp. 257–281 | DOI | MR | Zbl

[11] Choquard, P.; Stubbe, J. The one dimensional Schrödinger–Newton equations, Lett. Math. Phys., Volume 81 (2007), pp. 177–184 | DOI | MR | Zbl

[12] Choquard, P.; Stubbe, J.; Vuffray, M. Stationary solutions of the Schrödinger–Newton model—an ODE approach, Differ. Integral Equ., Volume 21 (2008) no. 7–8, pp. 665–679 | MR | Zbl

[13] Cingolani, S.; Clapp, M.; Secchi, S. Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., Volume 63 (2012), pp. 233–248 | DOI | MR | Zbl

[14] Clapp, M.; Puppe, D. Critical point theory with symmetries, J. Reine Angew. Math., Volume 418 (1991), pp. 1–29 | MR | Zbl

[15] Coti-Zelati, V.; Rabinowitz, P.H. Homoclinic type solutions for a semilinear elliptic PDE on Rn , Commun. Pure Appl. Math., Volume 45 (1992), pp. 1217–1269 | MR | Zbl

[16] D'Aprile, T.; Mugnai, D. Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrodinger–Maxwell equations, Proc. R. Soc. Edinb. A, Volume 134 (2004) no. 5, pp. 893–906 | DOI | MR | Zbl

[17] Esteban, M.J.; Lions, P.-L. Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. R. Soc. Edinb. A, Volume 93 (1982/1983) no. 1–2, pp. 1–14 | MR | Zbl

[18] Frölich, J.; Lenzmann, E. Mean-field limit of quantum Bose gases and nonlinear Hartree equation, Equ. Dériv. Partielles, Ecole Polytech. Palaiseau, Volume 134 (2003) no. XIX | Numdam | MR | Zbl

[19] Li, G.; Wang, C. The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti–Rabinowitz condition, Ann. Acad. Sci. Fenn., Math., Volume 36 (2011) no. 2, pp. 461–480 | MR | Zbl

[20] Lieb, E.H. Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., Volume 57 (1977), pp. 93–105 | MR | Zbl

[21] Lieb, E.H. Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math., Volume 118 (1983), pp. 349–374 | MR | Zbl

[22] Lions, P.-L. Solutions of Hartree–Fock equations for Coulomb systems, Commun. Math. Phys., Volume 109 (1984), pp. 33–97 | MR | Zbl

[23] Ma, L.; Zhao, L. Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., Volume 195 (2010), pp. 455–467 | MR | Zbl

[24] Masaki, S. Energy solution to a Schrödinger–Poisson system in the two-dimensional whole space, SIAM J. Math. Anal., Volume 43 (2011) no. 6, pp. 2719–2731 | DOI | MR | Zbl

[25] Moroz, V.; Van Schaftingen, J. Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., Volume 265 (2013) no. 2, pp. 153–184 | DOI | MR | Zbl

[26] Mugnai, D. The Schrödinger–Poisson System with Positive Potential, Commun. Partial Differ. Equ., Volume 36 (2013), pp. 1009–1117 | MR | Zbl

[27] Pekar, S.I. Untersuchungen über die Elektronentheorie der Kristalle, Akademie-Verlag, Berlin, 1954 | DOI | Zbl

[28] Penrose, R. On gravity's role in quantum state reduction, Gen. Relativ. Gravit., Volume 28 (1996) no. 5, pp. 581–600 | DOI | MR | Zbl

[29] Reed, M.; Barry, S. Methods Modern Math. Phys., 4 (1978)

[30] Ruiz, D. The Schrödinger–Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., Volume 137 (2006), pp. 655–674 | MR | Zbl

[31] Struwe, M. Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, Heidelberg, 1990 | MR | Zbl

[32] Stubbe, J. Bound states of two-dimensional Schrödinger–Newton equations, 2008 | arXiv

[33] Willem, M. Minimax Theorems, vol. 24, 1996 | MR | Zbl

Cité par Sources :