High magnetic field equilibria for the Fokker–Planck–Landau equation
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 4, pp. 899-931.

The subject matter of this paper concerns the equilibria of the Fokker–Planck–Landau equation under the action of strong magnetic fields. Averaging with respect to the fast cyclotronic motion when the Larmor radius is supposed to be finite leads to an integro-differential version of the Fokker–Planck–Landau collision kernel, combining perpendicular space coordinates (with respect to the magnetic lines) and velocity. We determine the equilibria of this gyroaveraged Fokker–Planck–Landau kernel and derive the macroscopic equations describing the evolution around these equilibria, in the parallel direction.

DOI : 10.1016/j.anihpc.2015.01.008
Classification : 35Q75, 78A35, 82D10
Mots clés : Finite Larmor radius approximation, Fokker–Planck–Landau equation, H-theorem
@article{AIHPC_2016__33_4_899_0,
     author = {Bostan, Mihai},
     title = {High magnetic field equilibria for the {Fokker{\textendash}Planck{\textendash}Landau} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {899--931},
     publisher = {Elsevier},
     volume = {33},
     number = {4},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.01.008},
     mrnumber = {3519526},
     zbl = {1350.35187},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2015.01.008/}
}
TY  - JOUR
AU  - Bostan, Mihai
TI  - High magnetic field equilibria for the Fokker–Planck–Landau equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 899
EP  - 931
VL  - 33
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2015.01.008/
DO  - 10.1016/j.anihpc.2015.01.008
LA  - en
ID  - AIHPC_2016__33_4_899_0
ER  - 
%0 Journal Article
%A Bostan, Mihai
%T High magnetic field equilibria for the Fokker–Planck–Landau equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 899-931
%V 33
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2015.01.008/
%R 10.1016/j.anihpc.2015.01.008
%G en
%F AIHPC_2016__33_4_899_0
Bostan, Mihai. High magnetic field equilibria for the Fokker–Planck–Landau equation. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 4, pp. 899-931. doi : 10.1016/j.anihpc.2015.01.008. http://archive.numdam.org/articles/10.1016/j.anihpc.2015.01.008/

[1] Bardos, C.; Golse, F.; Levermore, D. Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Stat. Phys., Volume 63 (1991), pp. 323–344 | DOI | MR

[2] Bardos, C.; Golse, F.; Levermore, D. Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation, Commun. Pure Appl. Math., Volume 46 (1993), pp. 667–753 | DOI | MR | Zbl

[3] Bostan, M. The Vlasov–Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., Volume 61 (2009), pp. 91–123 | MR | Zbl

[4] Bostan, M. Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differ. Equ., Volume 249 (2010), pp. 1620–1663 | DOI | MR | Zbl

[5] Bostan, M. Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation, SIAM J. Multiscale Model. Simul., Volume 8 (2010), pp. 1923–1957 | DOI | MR | Zbl

[6] Bostan, M. Transport of charged particles under fast oscillating magnetic fields, SIAM J. Math. Anal., Volume 44 (2012), pp. 1415–1447 | DOI | MR | Zbl

[7] Bostan, M.; Caldini-Queiros, C. Finite Larmor radius approximation for collisional magnetized plasmas, C. R. Math. Acad. Sci. Paris, Sér. I, Volume 350 (2012), pp. 879–884 | MR | Zbl

[8] Bostan, M.; Caldini-Queiros, C. Finite Larmor radius approximation for collisional magnetic confinement. Part I: the linear Boltzmann equation, Q. Appl. Math., Volume LXXII (2014) no. 2, pp. 323–345 | DOI | MR | Zbl

[9] Bostan, M.; Caldini-Queiros, C. Finite Larmor radius approximation for collisional magnetic confinement. Part II: the Fokker–Planck–Landau equation, Q. Appl. Math., Volume LXXII (2014) no. 3, pp. 513–548 | DOI | MR | Zbl

[10] Bostan, M.; Gamba, I.M. Impact of strong magnetic fields on collision mechanism for transport of charged particles, J. Stat. Phys., Volume 148 (2012) no. 5, pp. 856–895 | DOI | MR | Zbl

[11] Brizard, A.J. A guiding-center Fokker–Planck collision operator for nonuniform magnetic fields, Phys. Plasmas, Volume 11 (2004), pp. 4429–4438 | DOI | MR

[12] Brizard, A.J.; Hahm, T.S. Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., Volume 79 (2007), pp. 421–468 | DOI | MR | Zbl

[13] Desvillettes, L.; Villani, C. On the spatially homogeneous Landau equation for hard potentials. I Existence, uniqueness and smoothness, Commun. Partial Differ. Equ., Volume 25 (2000), pp. 179–259 | DOI | MR | Zbl

[14] Desvillettes, L.; Villani, C. On the spatially homogeneous Landau equation for hard potentials. II H-theorem and applications, Commun. Partial Differ. Equ., Volume 25 (2000), pp. 261–298 | MR | Zbl

[15] Frénod, E. Application of the averaging method to the gyrokinetic plasma, Asymptot. Anal., Volume 46 (2006), pp. 1–28 | MR | Zbl

[16] Frénod, E.; Mouton, A. Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates, J. Pure Appl. Math. Adv. Appl., Volume 4 (2010), pp. 135–169 | MR | Zbl

[17] Frénod, E.; Sonnendrücker, E. Homogenization of the Vlasov equation and of the Vlasov–Poisson system with strong external magnetic field, Asymptot. Anal., Volume 18 (1998), pp. 193–213 | MR | Zbl

[18] Frénod, E.; Sonnendrücker, E. The finite Larmor radius approximation, SIAM J. Math. Anal., Volume 32 (2001), pp. 1227–1247 | DOI | MR | Zbl

[19] Garbet, X.; Dif-Pradalier, G.; Nguyen, C.; Sarazin, Y.; Grandgirard, V.; Ghendrih, Ph. Neoclassical equilibrium in gyrokinetic simulations, Phys. Plasmas, Volume 16 (2009) | DOI

[20] Golse, F.; Saint-Raymond, L. The Vlasov–Poisson system with strong magnetic field, J. Math. Pures Appl., Volume 78 (1999), pp. 791–817 | DOI | MR | Zbl

[21] Hazeltine, R.D.; Meiss, J.D. Plasma Confinement, Dover Publications, Inc., Mineola, NY, 2003

[22] Levermore, D. Entropic convergence and the linearized limit for the Boltzmann equation, Commun. Partial Differ. Equ., Volume 18 (1993), pp. 1231–1248 | DOI | MR | Zbl

[23] Levermore, D. Moment closure hierarchies for kinetic theories, J. Stat. Phys., Volume 83 (1996), pp. 1021–1065 | DOI | MR | Zbl

[24] Saint-Raymond, L. Control of large velocities in the two-dimensional gyrokinetic approximation, J. Math. Pures Appl., Volume 81 (2002), pp. 379–399 | DOI | MR | Zbl

[25] Xu, X.Q.; Rosenbluth, M.N. Numerical simulation of ion-temperature-gradient-driven modes, Phys. Fluids B, Volume 3 (1991), pp. 627–643

Cité par Sources :