Parabolic limit with differential constraints of first-order quasilinear hyperbolic systems
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 4, pp. 1103-1130.

The goal of this work is to provide a general framework to study singular limits of initial-value problems for first-order quasilinear hyperbolic systems with stiff source terms in several space variables. We propose structural stability conditions of the problem and construct an approximate solution by a formal asymptotic expansion with initial layer corrections. In general, the equations defining the approximate solution may come together with differential constraints, and so far there are no results for the existence of solutions. Therefore, sufficient conditions are shown so that these equations are parabolic without differential constraint. We justify rigorously the validity of the asymptotic expansion on a time interval independent of the parameter, in the case of the existence of approximate solutions. Applications of the result include Euler equations with damping and an Euler–Maxwell system with relaxation. The latter system was considered in [27,9] which contain ideas used in the present paper.

DOI : 10.1016/j.anihpc.2015.03.006
Classification : 35C20, 35L60, 76M45
Mots clés : First-order quasilinear hyperbolic system, Singular limit, Structural stability condition, Differential constraint, Parabolic limit equations
@article{AIHPC_2016__33_4_1103_0,
     author = {Peng, Yue-Jun and Wasiolek, Victor},
     title = {Parabolic limit with differential constraints of first-order quasilinear hyperbolic systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1103--1130},
     publisher = {Elsevier},
     volume = {33},
     number = {4},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.03.006},
     zbl = {1347.35023},
     mrnumber = {3519534},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.006/}
}
TY  - JOUR
AU  - Peng, Yue-Jun
AU  - Wasiolek, Victor
TI  - Parabolic limit with differential constraints of first-order quasilinear hyperbolic systems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1103
EP  - 1130
VL  - 33
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.006/
DO  - 10.1016/j.anihpc.2015.03.006
LA  - en
ID  - AIHPC_2016__33_4_1103_0
ER  - 
%0 Journal Article
%A Peng, Yue-Jun
%A Wasiolek, Victor
%T Parabolic limit with differential constraints of first-order quasilinear hyperbolic systems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1103-1130
%V 33
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.006/
%R 10.1016/j.anihpc.2015.03.006
%G en
%F AIHPC_2016__33_4_1103_0
Peng, Yue-Jun; Wasiolek, Victor. Parabolic limit with differential constraints of first-order quasilinear hyperbolic systems. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 4, pp. 1103-1130. doi : 10.1016/j.anihpc.2015.03.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2015.03.006/

[1] Arnold, V. Equations Différentielles Ordinaires, Editions MIR, Moscow, 1988 (in French), translated from the Russian by Djilali Embarek | MR

[2] Besse, C.; Degond, P.; Deluzet, F.; Claudel, J.; Gallice, G.; Tessieras, C. A model hierarchy for ionospheric plasma modeling, Math. Models Methods Appl. Sci., Volume 14 (2004), pp. 393–415 | DOI | MR | Zbl

[3] Boillat, G.; Ruggeri, T. Hyperbolic principal subsystems: entropy convexity and subcharacteristic conditions, Arch. Ration. Mech. Anal., Volume 137 (1997), pp. 305–320 | DOI | MR | Zbl

[4] Bouchut, F.; Guarguaglini, F.R.; Natalini, R. Diffusive BGK approximations for nonlinear multidimensional parabolic equations, Indiana Univ. Math. J., Volume 49 (2000), pp. 723–749 | DOI | MR | Zbl

[5] Chen, F. Introduction to Plasma Physics and Controlled Fusion, vol. 1, Plenum Press, New York, 1984 | DOI

[6] Chen, G.Q.; Levermore, C.D.; Liu, T.P. Hyperbolic conservation laws with stiff relaxation terms and entropy, Commun. Pure Appl. Math., Volume 47 (1994), pp. 787–830 | MR | Zbl

[7] Coulombel, J.F.; Goudon, T. The strong relaxation limit of the multidimensional isothermal Euler equations, Trans. Am. Math. Soc., Volume 359 (2007), pp. 637–648 | MR | Zbl

[8] Friedrichs, K.O. Symmetric hyperbolic linear differential equations, Commun. Pure Appl. Math., Volume 7 (1954), pp. 345–392 | DOI | MR | Zbl

[9] Hajjej, M.L.; Peng, Y.J. Initial layers and zero-relaxation limits of Euler–Maxwell equations, J. Differ. Equ., Volume 252 (2012), pp. 1441–1465 | DOI | MR | Zbl

[10] Hsiao, G.C.; Weinacht, R.J. Singular perturbations for a semilinear hyperbolic equation, SIAM J. Math. Anal., Volume 14 (1983), pp. 1168–1179 | DOI | MR | Zbl

[11] Hsiao, L.; Liu, T.P. Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., Volume 143 (1992), pp. 599–605 | DOI | MR | Zbl

[12] Jin, S.; Xin, Z.P. The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Commun. Pure Appl. Math., Volume 48 (1995), pp. 235–276 | MR | Zbl

[13] Kato, T. The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., Volume 58 (1975), pp. 181–205 | DOI | MR | Zbl

[14] Klainerman, S.; Majda, A. Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math., Volume 34 (1981), pp. 481–524 | DOI | MR | Zbl

[15] Ladyženskaja, O.; Solonnikov, V.A.; Ural'ceva, N.N. Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr., vol. 23, Amer. Math. Soc., Providence, RI, 1968 | DOI | MR | Zbl

[16] Lattanzio, C.; Yong, W.A. Hyperbolic–parabolic singular limits for first-order nonlinear systems, Commun. Partial Differ. Equ., Volume 26 (2001), pp. 939–964 | DOI | MR | Zbl

[17] Li, T.T. China–Japan Symposium on Reaction–Diffusion Equations and Their Applications and Computational Aspects, World Sci. Publ., River Edge, NJ (1997), pp. 81–91 (Shanghai, 1994) | MR | Zbl

[18] Lions, P.L.; Toscani, G. Diffusive limit for finite velocity Boltzmann kinetic models, Rev. Mat. Iberoam., Volume 13 (1997), pp. 473–513 | MR | Zbl

[19] Liu, T.P. Hyperbolic conservation laws with relaxation, Commun. Math. Phys., Volume 108 (1987), pp. 153–175 | MR | Zbl

[20] Majda, A. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New York, 1984 | DOI | MR | Zbl

[21] Marcati, P.; Milani, A. The one-dimensional Darcy's law as the limit of a compressible Euler flow, J. Differ. Equ., Volume 84 (1990), pp. 129–147 | DOI | MR | Zbl

[22] Marcati, P.; Milani, A.; Secchi, P. Singular convergence of weak solutions for a quasilinear nonhomogeneous hyperbolic system, Manuscr. Math., Volume 60 (1988), pp. 49–69 | DOI | MR | Zbl

[23] Marcati, P.; Rubino, B. Hyperbolic to parabolic relaxation theory for quasilinear first order systems, J. Differ. Equ., Volume 162 (2000), pp. 359–399 | DOI | MR | Zbl

[24] Markowich, P.A.; Ringhofer, C.A.; Schmeiser, C. Semiconductor Equations, Springer-Verlag, New York, 1990 | DOI | MR | Zbl

[25] Müller, I.; Ruggeri, T. Rational Extended Thermodynamics, Springer-Verlag, New York, 1998 (with supplementary chapters by H. Struchtrup and Wolf Weiss) | MR | Zbl

[26] Natalini, R. Analysis of Systems of Conservation Laws, Monogr. Surv. Pure Appl. Math., Volume vol. 99, Chapman & Hall/CRC, Boca Raton, FL (1999), pp. 128–198 (Aachen, 1997) | MR | Zbl

[27] Peng, Y.J.; Wang, S.; Gu, Q.L. Relaxation limit and global existence of smooth solution of compressible Euler–Maxwell equations, SIAM J. Math. Anal., Volume 43 (2011), pp. 944–970 | MR | Zbl

[28] Platkowski, T.; Illner, R. Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory, SIAM Rev., Volume 30 (1988), pp. 213–255 | DOI | MR | Zbl

[29] Serre, D. Relaxations semi-linéaire et cinétique des systèmes de lois de conservation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 17 (2000), pp. 169–192 | DOI | Numdam | MR | Zbl

[30] Sideris, T.C.; Thomases, B.; Wang, D. Long time behavior of solutions to the 3D compressible Euler equations with damping, Commun. Partial Differ. Equ., Volume 28 (2003), pp. 795–816 | DOI | MR | Zbl

[31] Tartar, L. Solutions oscillantes des équations de Carleman, Séminaire Equations aux dérivées partielles (Ecole Polytechnique), Exp. n0 12, 1980, pp. 1–15 | Numdam | MR | Zbl

[32] Whitham, G.B. Linear and Nonlinear Waves, Wiley, New York, 1974 | MR

[33] Yong, W.A. Singular perturbations of first-order hyperbolic systems with stiff source terms, J. Differ. Equ., Volume 155 (1999), pp. 89–132 | MR | Zbl

[34] Yong, W.A.; Freistüler, H.; Szepessy, A. Basic aspects of hyperbolic relaxation systems, Advances in the Theory of Shock Waves, Prog. Nonlinear Differ. Equ. Appl., vol. 47, Birkhäuser, Boston, 2001, pp. 259–305 | MR | Zbl

Cité par Sources :