Global existence for solutions of the focusing wave equation with the compactness property
Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1675-1690.

We prove that every solution of the focusing energy-critical wave equation with the compactness property is global. We also give similar results for supercritical wave and Schrödinger equations.

DOI : 10.1016/j.anihpc.2015.08.002
Mots clés : Focusing wave equation, Dynamics, Compactness, Global existence
@article{AIHPC_2016__33_6_1675_0,
     author = {Duyckaerts, Thomas and Kenig, Carlos and Merle, Frank},
     title = {Global existence for solutions of the focusing wave equation with the compactness property},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1675--1690},
     publisher = {Elsevier},
     volume = {33},
     number = {6},
     year = {2016},
     doi = {10.1016/j.anihpc.2015.08.002},
     mrnumber = {3569247},
     zbl = {1362.35190},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2015.08.002/}
}
TY  - JOUR
AU  - Duyckaerts, Thomas
AU  - Kenig, Carlos
AU  - Merle, Frank
TI  - Global existence for solutions of the focusing wave equation with the compactness property
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2016
SP  - 1675
EP  - 1690
VL  - 33
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2015.08.002/
DO  - 10.1016/j.anihpc.2015.08.002
LA  - en
ID  - AIHPC_2016__33_6_1675_0
ER  - 
%0 Journal Article
%A Duyckaerts, Thomas
%A Kenig, Carlos
%A Merle, Frank
%T Global existence for solutions of the focusing wave equation with the compactness property
%J Annales de l'I.H.P. Analyse non linéaire
%D 2016
%P 1675-1690
%V 33
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2015.08.002/
%R 10.1016/j.anihpc.2015.08.002
%G en
%F AIHPC_2016__33_6_1675_0
Duyckaerts, Thomas; Kenig, Carlos; Merle, Frank. Global existence for solutions of the focusing wave equation with the compactness property. Annales de l'I.H.P. Analyse non linéaire, Tome 33 (2016) no. 6, pp. 1675-1690. doi : 10.1016/j.anihpc.2015.08.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2015.08.002/

[1] Brezis, H.; Marcus, M. Hardy's inequalities revisited, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 25 (1997) no. 1–2, pp. 217–237 (1998), dedicated to Ennio De Giorgi | Numdam | MR | Zbl

[2] Duyckaerts, T.; Kenig, C.; Merle, F. Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation, J. Eur. Math. Soc., Volume 13 (2011) no. 3, pp. 533–599 | MR | Zbl

[3] Duyckaerts, T.; Kenig, C.; Merle, F. Scattering for radial, bounded solutions of focusing supercritical wave equations, Int. Math. Res. Not. (2012) | MR | Zbl

[4] Duyckaerts, T.; Kenig, C.; Merle, F. Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case, J. Eur. Math. Soc., Volume 14 (2012) no. 5, pp. 1389–1454 | DOI | MR | Zbl

[5] Duyckaerts, T.; Kenig, C.; Merle, F. Solutions of the focusing, energy-critical wave equation with the compactness property, 2014 (preprint) | arXiv

[6] Duyckaerts, T.; Kenig, C.; Merle, F. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations, Commun. Pure Appl. Anal., Volume 14 (2015) no. 4, pp. 1275–1326 | MR | Zbl

[7] Giga, Y.; Kohn, R.V. Nondegeneracy of blowup for semilinear heat equations, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 845–884 | DOI | MR | Zbl

[8] Kenig, C.E.; Merle, F. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., Volume 166 (2006) no. 3, pp. 645–675 | DOI | MR | Zbl

[9] Kenig, C.E.; Merle, F. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., Volume 201 (2008) no. 2, pp. 147–212 | DOI | MR | Zbl

[10] Kenig, C.E.; Merle, F. Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, Am. J. Math., Volume 133 (2011) no. 4, pp. 1029–1065 | DOI | MR | Zbl

[11] Killip, R.; Visan, M. Energy-supercritical NLS: critical H˙s-bounds imply scattering, Commun. Partial Differ. Equ., Volume 35 (2010) no. 6, pp. 945–987 | DOI | MR | Zbl

[12] Killip, R.; Visan, M. The defocusing energy-supercritical nonlinear wave equation in three space dimensions, Trans. Am. Math. Soc., Volume 363 (2011) no. 7, pp. 3893–3934 | DOI | MR | Zbl

[13] Merle, F.; Zaag, H. Determination of the blow-up rate for the semilinear wave equation, Am. J. Math., Volume 125 (2003) no. 5, pp. 1147–1164 | DOI | MR | Zbl

[14] Tao, T. A (concentration-)compact attractor for high-dimensional non-linear Schrödinger equations, Dyn. Partial Differ. Equ., Volume 4 (2007) no. 1, pp. 1–53 | MR | Zbl

Cité par Sources :