Viscoelastic flows in a rough channel: A multiscale analysis
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 483-508.

We investigate the influence of the rough boundaries on viscoelastic flows, described by the diffusive Oldroyd model. The fluid domain has a rough wall modeled by roughness patterns of size ε1. We present and rigorously justify an asymptotic expansion with respect to ε, at any order, based upon the definition of elementary problems: Oldroyd-type problems at the global scale defined on a smoothened domain and boundary-layer corrector problems. The resulting analysis guarantees optimality with respect to the truncation error and leads to a numerical algorithm which allows us to build the approximation of the solution at any required precision.

DOI : 10.1016/j.anihpc.2016.01.002
Mots clés : Viscoelastic fluid, Roughness, Oldroyd model, Boundary layer
@article{AIHPC_2017__34_2_483_0,
     author = {Chupin, Laurent and Martin, S\'ebastien},
     title = {Viscoelastic flows in a rough channel: {A} multiscale analysis},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {483--508},
     publisher = {Elsevier},
     volume = {34},
     number = {2},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.01.002},
     zbl = {1381.76017},
     mrnumber = {3610942},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2016.01.002/}
}
TY  - JOUR
AU  - Chupin, Laurent
AU  - Martin, Sébastien
TI  - Viscoelastic flows in a rough channel: A multiscale analysis
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 483
EP  - 508
VL  - 34
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2016.01.002/
DO  - 10.1016/j.anihpc.2016.01.002
LA  - en
ID  - AIHPC_2017__34_2_483_0
ER  - 
%0 Journal Article
%A Chupin, Laurent
%A Martin, Sébastien
%T Viscoelastic flows in a rough channel: A multiscale analysis
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 483-508
%V 34
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2016.01.002/
%R 10.1016/j.anihpc.2016.01.002
%G en
%F AIHPC_2017__34_2_483_0
Chupin, Laurent; Martin, Sébastien. Viscoelastic flows in a rough channel: A multiscale analysis. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 2, pp. 483-508. doi : 10.1016/j.anihpc.2016.01.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2016.01.002/

[1] Achdou, Y.; Pironneau, O.; Valentin, F. Effective boundary conditions for laminar flows over periodic rough boundaries, J. Comput. Phys., Volume 147 (1998) no. 1, pp. 187–218 | DOI | MR | Zbl

[2] Adams, J.M.; Fielding, S.M.; Olmsted, P.D. The interplay between boundary conditions and flow geometries in shear banding: hysteresis, band configurations, and surface transitions, J. Non-Newton. Fluid Mech., Volume 151 (2008) no. 1, pp. 101–118 | Zbl

[3] Amirat, Y.; Bresch, D.; Lemoine, J.; Simon, J. Effect of rugosity on a flow governed by stationary Navier–Stokes equations, Q. Appl. Math., Volume 59 (2001) no. 4, pp. 769–785 | DOI | MR | Zbl

[4] Amirat, Y.; Simon, J. Influence de la rugosité en hydrodynamique laminaire, C. R. Acad. Sci., Sér. 1 Math., Volume 323 (1996) no. 3, pp. 313–318 | MR | Zbl

[5] Barrett, J.W.; Schwab, C.; Süli, E. Existence of global weak solutions for some polymeric flow models, Math. Models Methods Appl. Sci., Volume 15 (2005) no. 6, pp. 939–983 | DOI | MR | Zbl

[6] Basson, A.; Gérard-Varet, D. Wall laws for fluid flows at a boundary with random roughness, Commun. Pure Appl. Math., Volume 61 (2008) no. 7, pp. 941–987 | DOI | MR | Zbl

[7] Bhave, A.V.; Menon, R.K.; Armstrong, R.C.; Brown, R.A. A constitutive equation for liquid-crystalline polymer solutions, J. Rheol., Volume 37 (1993) no. 3, pp. 413–441 | DOI

[8] Blavier, E.; Mikelić, A. On the stationary quasi-Newtonian flow obeying a power-law, Math. Methods Appl. Sci., Volume 18 (1995) no. 12, pp. 927–948 | DOI | MR | Zbl

[9] Bogovskii, M.E. Solution of the first boundary value problem for an equation of continuity of an incompressible medium, Dokl. Akad. Nauk SSSR, Volume 248 (1979) no. 5, pp. 1037–1040 | MR | Zbl

[10] Boughanim, F.; Tapiéro, R. Derivation of the two-dimensional Carreau law for a quasi-Newtonian fluid flow through a thin slab, Appl. Anal., Volume 57 (1995) no. 3–4, pp. 243–269 | MR | Zbl

[11] Boyer, F.; Fabrie, P. Éléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles, Mathématiques & Applications, , vol. 52, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl

[12] Bresch, D.; Milisic, V. High order multi-scale wall-laws, Part I: the periodic case, Q. Appl. Math., Volume 68 (2010) no. 2, pp. 229–253 | DOI | MR | Zbl

[13] Carreau, P.J.; de Kee, D.; Daroux, M. An analysis of the viscous behaviour of polymeric solutions, Can. J. Chem. Eng., Volume 57 (1979) no. 2, pp. 135–141 | DOI

[14] Chupin, L. Roughness effect on Neumann boundary condition, Asymptot. Anal., Volume 78 (2012) no. 1–2, pp. 85–121 | MR | Zbl

[15] Chupin, L.; Martin, S. Rigorous derivation of the thin film approximation with roughness-induced correctors, SIAM J. Math. Anal., Volume 44 (2012) no. 4, pp. 3041–3070 | DOI | MR | Zbl

[16] Chupin, L.; Martin, S. Stationary Oldroyd model with diffusive stress: mathematical analysis of the model and vanishing diffusion process, J. Non-Newton. Fluid Mech., Volume 218 (2015), pp. 27–39 | DOI | MR

[17] Constantin, P.; Kliegl, M. Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress, Arch. Ration. Mech. Anal., Volume 206 (2012) no. 3, pp. 725–740 | DOI | MR | Zbl

[18] El-Kareh, A.W.; Leal, L.G. Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion, J. Non-Newton. Fluid Mech., Volume 33 (1989), pp. 257–287 | Zbl

[19] Gérard-Varet, D. The Navier wall law at a boundary with random roughness, Commun. Math. Phys., Volume 286 (2009) no. 1, pp. 81–110 | DOI | MR | Zbl

[20] Jäger, W.; Mikelić, A. On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differ. Equ., Volume 170 (2001) no. 1, pp. 96–122 | DOI | MR | Zbl

[21] Joseph, D.D. Fluid Dynamics of Viscoelastic Liquids, Appl. Math. Sci., vol. 84, Springer, New York, 1998 (754 p) | MR

[22] Kennedy, P. Flow Analysis of Injection Molds, Hanser Gardner Publications, 1995

[23] Liu, A.J.; Fredrickson, G.H. Free energy functionals for semiflexible polymer solutions and blends, Macromolecules, Volume 26 (1993) no. 11, pp. 2817–2824

[24] Lu, C.-Y.D.; Olmsted, P.D.; Ball, R.C. Effects of nonlocal stress on the determination of shear banding flow, Phys. Rev. Lett., Volume 84 (Jan 2000), pp. 642–645

[25] Łukaszewicz, G. Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 1999 | DOI | MR | Zbl

[26] Navier, C.L. Sur les lois de l'équilibre et du mouvement des corps élastiques, Mem. Acad. R. Sci. Inst. France, Volume 6 (1827), pp. 369

[27] Oldroyd, J.G. On the formulation of rheological equations of state, Proc. R. Soc. Lond. Ser. A, Volume 200 (1950), pp. 523–541 | MR | Zbl

[28] Olmsted, P.D.; Lu, C.-Y.D. Coexistence and phase separation in sheared complex fluids, Phys. Rev. E, Volume 56 (1997), pp. R55–R58 | DOI

[29] Olmsted, P.D.; Lu, C.-Y.D. Phase coexistence of complex fluids in shear flow, Faraday Discuss., Volume 112 (1999), pp. 183–194 | DOI

[30] Olmsted, P.D.; Radulescu, O.; Lu, C.-Y.D. Johnson–Segalman model with a diffusion term in cylindrical Couette flow, J. Rheol., Volume 44 (2000) no. 2, pp. 257–275 | DOI

[31] Rossi, L.F.; McKinley, G.; Cook, L.P. Slippage and migration in Taylor–Couette flow of a model for dilute wormlike micellar solutions, J. Non-Newton. Fluid Mech., Volume 136 (2006), pp. 79–92 | DOI | Zbl

[32] Spenley, N.A.; Yuan, X.-F.; Cates, M.E. Nonmonotonic constitutive laws and the formation of shear-banded flows, J. Phys. II France, Volume 6 (1996) no. 4, pp. 551–571

[33] Tanner, R.I.; Walters, K. Rheology: An Historical Perspective, Rheology Series, vol. 7, Elsevier, Amsterdam, 1998 (268 p) | Zbl

Cité par Sources :