Boundary-degenerate elliptic operators and Hölder continuity for solutions to variational equations and inequalities
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1075-1129.

We prove local supremum bounds, a Harnack inequality, Hölder continuity up to the boundary, and a strong maximum principle for solutions to a variational equation defined by an elliptic operator which becomes degenerate along a portion of the domain boundary and where no boundary condition is prescribed, regardless of the sign of the Fichera function. In addition, we prove Hölder continuity up to the boundary for solutions to variational inequalities defined by this boundary-degenerate elliptic operator.

DOI : 10.1016/j.anihpc.2016.07.005
Classification : 35J70, 35J86, 49J40, 35R45, 35R35, 49J20, 60J60
Mots clés : Degenerate elliptic differential operator, Degenerate diffusion process, Harnack inequality, Hölder continuity, Variational inequality, Weighted Sobolev space
@article{AIHPC_2017__34_5_1075_0,
     author = {Feehan, Paul M.N. and Pop, Camelia A.},
     title = {Boundary-degenerate elliptic operators and {H\"older} continuity for solutions to variational equations and inequalities},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1075--1129},
     publisher = {Elsevier},
     volume = {34},
     number = {5},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.07.005},
     zbl = {1386.35114},
     mrnumber = {3742516},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2016.07.005/}
}
TY  - JOUR
AU  - Feehan, Paul M.N.
AU  - Pop, Camelia A.
TI  - Boundary-degenerate elliptic operators and Hölder continuity for solutions to variational equations and inequalities
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1075
EP  - 1129
VL  - 34
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2016.07.005/
DO  - 10.1016/j.anihpc.2016.07.005
LA  - en
ID  - AIHPC_2017__34_5_1075_0
ER  - 
%0 Journal Article
%A Feehan, Paul M.N.
%A Pop, Camelia A.
%T Boundary-degenerate elliptic operators and Hölder continuity for solutions to variational equations and inequalities
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1075-1129
%V 34
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2016.07.005/
%R 10.1016/j.anihpc.2016.07.005
%G en
%F AIHPC_2017__34_5_1075_0
Feehan, Paul M.N.; Pop, Camelia A. Boundary-degenerate elliptic operators and Hölder continuity for solutions to variational equations and inequalities. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1075-1129. doi : 10.1016/j.anihpc.2016.07.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2016.07.005/

[1] Adams, R.A. Sobolev Spaces, Academic Press, Orlando, FL, 1975 | MR

[2] Bombieri, E.; Giusti, E. Harnack's inequality for elliptic differential equations on minimal surfaces, Invent. Math., Volume 15 (1972), pp. 24–46 | DOI | MR | Zbl

[3] Caffarelli, L.; Fabes, E.; Mortola, S.; Salsa, S. Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J., Volume 30 (1981), pp. 621–640 | MR | Zbl

[4] Chanillo, S.; Wheeden, R.L. Harnack's inequality and mean-value inequalities for solutions of degenerate elliptic equations, Commun. Partial Differ. Equ., Volume 11 (1986), pp. 1111–1134 | DOI | MR | Zbl

[5] Chiarenza, F.; Rustichini, A.; Serapioni, R. De Giorgi–Moser theorem for a class of degenerate non-uniformly elliptic equations, Commun. Partial Differ. Equ., Volume 14 (1989) no. 5, pp. 635–662 | DOI | MR | Zbl

[6] Chiarenza, F.; Serapioni, R. Degenerate parabolic equations and Harnack inequality, Ann. Mat. Pura Appl. (4), Volume 137 (1984), pp. 139–162 | DOI | MR | Zbl

[7] Chiarenza, F.; Serapioni, R. A Harnack inequality for degenerate parabolic equations, Commun. Partial Differ. Equ., Volume 9 (1984) no. 8, pp. 719–749 | DOI | MR | Zbl

[8] Chiarenza, F.; Serapioni, R. A remark on a Harnack inequality for degenerate parabolic equations, Rend. Semin. Mat. Univ. Padova, Volume 73 (1985), pp. 179–190 | Numdam | MR | Zbl

[9] Daskalopoulos, P.; Feehan, P.M.N. Existence, uniqueness, and global regularity for variational inequalities and obstacle problems for degenerate elliptic partial differential operators in mathematical finance | arXiv

[10] Daskalopoulos, P.; Feehan, Paul M.N. C1,1 regularity for degenerate elliptic obstacle problems, J. Differ. Equ., Volume 260 (2016) no. 6, pp. 5043–5074 (MR 3448773) | DOI | MR | Zbl

[11] Daskalopoulos, P.; Hamilton, R. C-regularity of the free boundary for the porous medium equation, J. Am. Math. Soc., Volume 11 (1998), pp. 899–965 | DOI | MR | Zbl

[12] Ekström, E.; Tysk, J. Boundary conditions for the single-factor term structure equation, Ann. Appl. Probab., Volume 21 (2011), pp. 332–350 | DOI | MR | Zbl

[13] Epstein, C.L.; Mazzeo, R. Wright–Fisher diffusion in one dimension, SIAM J. Math. Anal., Volume 42 (2010), pp. 568–608 | DOI | MR | Zbl

[14] Epstein, C.L.; Mazzeo, R. Degenerate diffusion operators arising in population biology, Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 2013 | arXiv | MR | Zbl

[15] Fabes, E.B.; Kenig, C.E.; Serapioni, R.P. The local regularity of solutions of degenerate elliptic equations, Commun. Partial Differ. Equ., Volume 7 (1982), pp. 77–116 | DOI | MR | Zbl

[16] Di Fazio, G.; Fanciullo, M.S.; Zamboni, P. Harnack inequality and regularity for degenerate quasilinear elliptic equations, Math. Z., Volume 264 (2010), pp. 679–695 | DOI | MR | Zbl

[17] Di Fazio, G.; Zamboni, P. Regularity for quasilinear degenerate elliptic equations, Math. Z., Volume 253 (2006), pp. 787–803 | MR | Zbl

[18] Feehan, P.M.N. A classical Perron method for existence of smooth solutions to boundary value and obstacle problems for degenerate-elliptic operators via holomorphic maps | arXiv | Zbl

[19] Feehan, P.M.N. Partial differential operators with non-negative characteristic form, maximum principles, and uniqueness for boundary value and obstacle problems | arXiv

[20] Feehan, P.M.N. Maximum principles for boundary-degenerate linear elliptic differential operators, Commun. Partial Differ. Equ., Volume 38 (2013), pp. 1863–1935 | arXiv | MR | Zbl

[21] Feehan, P.M.N.; Pop, C.A. Degenerate elliptic operators in mathematical finance and Hölder continuity for solutions to variational equations and inequalities | arXiv

[22] Feehan, P.M.N.; Pop, C.A. Degenerate elliptic operators in mathematical finance and Hölder continuity for solutions to variational equations and inequalities | arXiv

[23] Feehan, P.M.N.; Pop, C.A. A Schauder approach to degenerate-parabolic partial differential equations with unbounded coefficients, J. Differ. Equ., Volume 254 (2013), pp. 4401–4445 | arXiv | MR | Zbl

[24] Feehan, P.M.N.; Pop, C.A. Schauder a priori estimates and regularity of solutions to degenerate-elliptic linear second-order partial differential equations, J. Differ. Equ., Volume 256 (2014), pp. 895–956 | arXiv | MR | Zbl

[25] Feehan, P.M.N.; Pop, C.A. Higher-order regularity for solutions to degenerate elliptic variational equations in mathematical finance, Adv. Differ. Equ., Volume 20 (2015), pp. 361–432 | arXiv | MR

[26] Fichera, G. Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine, Atti Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat., Sez. I. (8), Volume 5 (1956), pp. 1–30 | MR | Zbl

[27] Fichera, G., Univ. of Wisconsin Press, Madison (1960), pp. 97–120 | MR | Zbl

[28] Franchi, B.; Serapioni, R. Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 14 (1987), pp. 527–568 | Numdam | MR | Zbl

[29] Gilbarg, D.; Trudinger, N. Elliptic Partial Differential Equations of Second Order, Springer, New York, 1983 | MR | Zbl

[30] Grisvard, P. Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985 | MR | Zbl

[31] Heston, S. A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., Volume 6 (1993), pp. 327–343 | DOI | MR | Zbl

[32] Karatzas, I.; Shreve, S.E. Brownian Motion and Stochastic Calculus, Springer, New York, 1991 | MR | Zbl

[33] Keldyš, M.V. On certain cases of degeneration of equations of elliptic type on the boundry of a domain, Dokl. Akad. Nauk SSSR, Volume 77 (1951), pp. 181–183 MR 0042031 (13, 41a) | MR

[34] Koch, H. Non-Euclidean singular integrals and the porous medium equation, University of Heidelberg, 1999 www.mathematik.uni-dortmund.de/lsi/koch/publications.html (Habilitation Thesis)

[35] Kohn, J.J.; Nirenberg, L. Degenerate elliptic–parabolic equations of second order, Commun. Pure Appl. Math., Volume 20 (1967), pp. 797–872 | MR | Zbl

[36] Krylov, N.V. Lectures on Elliptic and Parabolic Equations in Hölder Spaces, American Mathematical Society, Providence, RI, 1996 | DOI | MR | Zbl

[37] Krylov, N.V. Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, American Mathematical Society, Providence, RI, 2008 | DOI | MR | Zbl

[38] Kufner, A. Weighted Sobolev Spaces, Wiley, New York, 1985 | MR

[39] Lierl, J.; Saloff-Coste, L. Parabolic Harnack inequality for time-dependent non-symmetric Dirichlet forms | arXiv | DOI | MR

[40] Mohammed, A. Harnack's inequality for solutions of some degenerate elliptic equations, Rev. Mat. Iberoam., Volume 18 (2002), pp. 325–354 | MR | Zbl

[41] Murthy, M.K.V.; Stampacchia, G. Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl., Volume 80 (1968), pp. 1–122 | MR | Zbl

[42] Murthy, M.K.V.; Stampacchia, G. Errata corrige: “Boundary value problems for some degenerate-elliptic operators”, Ann. Mat. Pura Appl. (4), Volume 90 (1971), pp. 413–414 | MR | Zbl

[43] Oleĭnik, O.A.; Radkevič, E.V. Second Order Equations with Nonnegative Characteristic Form, Plenum Press, New York, 1973 | DOI | MR

[44] Pingen, M. Regularity results for degenerate elliptic systems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 25 (2008), pp. 369–380 | DOI | Numdam | MR | Zbl

[45] Radkevič, E.V. Equations with nonnegative characteristic form. I, J. Math. Sci., Volume 158 (2009), pp. 297–452 | MR | Zbl

[46] Radkevič, E.V. Equations with nonnegative characteristic form. II, J. Math. Sci., Volume 158 (2009), pp. 453–604 | MR | Zbl

[47] Stredulinsky, E.W. Weighted Inequalities and Degenerate Elliptic Partial Differential Equations, Lecture Notes in Math., vol. 1074, Springer, New York, 1984 | DOI | MR | Zbl

[48] Sturm, K.T. Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9), Volume 75 (1996) no. 3, pp. 273–297 (MR 1387522) | MR | Zbl

[49] Troianiello, G.M. Elliptic Differential Equations and Obstacle Problems, Plenum Press, New York, 1987 | DOI | MR | Zbl

[50] Turesson, B.O. Nonlinear Potential Theory and Weighted Sobolev Spaces, Lecture Notes in Mathematics, vol. 1736, Springer, Berlin, 2000 | MR | Zbl

[51] Vitanza, C.; Zamboni, P. Regularity and existence results for degenerate elliptic operators, Variational Analysis and Applications, Nonconvex Optim. Appl., vol. 79, Springer, New York, 2005, pp. 1129–1140 | DOI | MR | Zbl

[52] Vitanza, C.; Zamboni, P. A variational inequality for a degenerate elliptic operator under minimal assumptions on the coefficients, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), Volume 10 (2007), pp. 341–356 | MR | Zbl

[53] Zamboni, P. Hölder continuity for solutions of linear degenerate elliptic equations under minimal assumptions, J. Differ. Equ., Volume 182 (2002), pp. 121–140 | DOI | MR | Zbl

Cité par Sources :