Comparison of the Calabi and Mabuchi geometries and applications to geometric flows
Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1131-1140.

Suppose (X,ω) is a compact Kähler manifold. We introduce and explore the metric geometry of the Lp,q-Calabi Finsler structure on the space of Kähler metrics H. After noticing that the Lp,q-Calabi and Lp-Mabuchi path length topologies on H do not typically dominate each other, we focus on the finite entropy space EEnt, contained in the intersection of the Lp-Calabi and L1-Mabuchi completions of H and find that after a natural strengthening, the Lp-Calabi and L1-Mabuchi topologies coincide on EEnt. As applications to our results, we give new convergence results for the Kähler–Ricci flow and the weak Calabi flow.

DOI : 10.1016/j.anihpc.2016.09.002
Mots clés : Ricci flow, Kahler geometry, Calabi metric, Mabuchi metric
@article{AIHPC_2017__34_5_1131_0,
     author = {Darvas, Tam\'as},
     title = {Comparison of the {Calabi} and {Mabuchi} geometries and applications to geometric flows},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1131--1140},
     publisher = {Elsevier},
     volume = {34},
     number = {5},
     year = {2017},
     doi = {10.1016/j.anihpc.2016.09.002},
     mrnumber = {3742517},
     zbl = {1380.58008},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2016.09.002/}
}
TY  - JOUR
AU  - Darvas, Tamás
TI  - Comparison of the Calabi and Mabuchi geometries and applications to geometric flows
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2017
SP  - 1131
EP  - 1140
VL  - 34
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2016.09.002/
DO  - 10.1016/j.anihpc.2016.09.002
LA  - en
ID  - AIHPC_2017__34_5_1131_0
ER  - 
%0 Journal Article
%A Darvas, Tamás
%T Comparison of the Calabi and Mabuchi geometries and applications to geometric flows
%J Annales de l'I.H.P. Analyse non linéaire
%D 2017
%P 1131-1140
%V 34
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2016.09.002/
%R 10.1016/j.anihpc.2016.09.002
%G en
%F AIHPC_2017__34_5_1131_0
Darvas, Tamás. Comparison of the Calabi and Mabuchi geometries and applications to geometric flows. Annales de l'I.H.P. Analyse non linéaire, Tome 34 (2017) no. 5, pp. 1131-1140. doi : 10.1016/j.anihpc.2016.09.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2016.09.002/

[1] Berman, R.; Boucksom, S.; Jonsson, M. A variational proof of a uniform version of the Yau–Tian–Donaldson conjecture for Fano manifolds | arXiv

[2] R. Berman, T. Darvas, L. Chinh, Convexity of the extended K-energy and convergence of the weak Calabi flow, preprint, August 2015. | MR

[3] Blocki, Z. Uniqueness and stability for the Monge–Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J., Volume 52 (2003), pp. 1697–1702 | DOI | MR | Zbl

[4] Blocki, Z. On uniqueness of the complex Monge–Ampère equation on compact Kähler manifolds, 2007/2008 (Institut Mittag-Leffler, Report No. 1)

[5] Boucksom, S.; Eyssidieux, P.; Guedj, V.; Zeriahi, A. Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010), pp. 199–262 | DOI | MR | Zbl

[6] Boucksom, Sébastien; Eyssidieux, Philippe; Guedj, Vincent An Introduction to the Kähler–Ricci Flow, Lecture Notes in Mathematics, vol. 2086, Springer, Cham, 2013 | DOI | MR | Zbl

[7] Boucksom, S.; Berman, R.; Eyssidieux, P.; Guedj, V.; Zeriahi, A. Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties | arXiv | Zbl

[8] Bridson, M.; Haefliger, A. Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 319, Springer-Verlag, Berlin, 1999 | MR | Zbl

[9] Calabi, E. The variation of Kähler metrics. I. The structure of the space; II. A minimum problem, Bull. Am. Math. Soc., Volume 60 (1954), pp. 167–168

[10] Calabi, E. Extremal Kähler metrics, Seminar on Differential Geometry, Ann. Math. Stud., vol. 102, Princeton Univ. Press, Princeton, NJ, 1982, pp. 259–290 | MR | Zbl

[11] Calabi, E.; Chen, X.X. The space of Kähler metrics. II, J. Differ. Geom., Volume 61 (2002) no. 2, pp. 173–193 | DOI | MR | Zbl

[12] Calamai, S. The Calabi metric for the space of Kähler metrics, Math. Ann., Volume 353 (2012) no. 2, pp. 373–402 | DOI | MR | Zbl

[13] Calamai, S.; Zheng, K. The Dirichlet and the weighted metrics for the space of Kähler metrics, Math. Ann., Volume 363 (2015) no. 3, pp. 817–856 | MR | Zbl

[14] Clarke, B.; Rubinstein, Y.A. Ricci flow and the metric completion of the space of Kähler metrics, Am. J. Math., Volume 135 (2013) no. 6, pp. 1477–1505 | DOI | MR | Zbl

[15] Clarke, B.; Rubinstein, Y.A. Conformal deformations of the Ebin metric and a generalized Calabi metric on the space of Riemannian metrics, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 30 (2013) no. 2, pp. 251–274 | DOI | Numdam | MR | Zbl

[16] Collins, T.; Székelyhidi, G. The twisted Kähler–Ricci flow | arXiv | DOI | Zbl

[17] Darvas, T. Envelopes and geodesics in spaces of Kähler potentials | arXiv

[18] Darvas, T. The Mabuchi geometry of finite energy classes, Adv. Math., Volume 285 (2015), pp. 182–219 | DOI | MR | Zbl

[19] Darvas, T.; He, W. Geodesic rays and Kähler–Ricci trajectories on Fano manifolds | arXiv | DOI | Zbl

[20] Darvas, T.; Rubinstein, Y. Tian's properness conjectures and Finsler geometry of the space of Kähler metrics | arXiv | DOI | Zbl

[21] Dinew, S. Uniqueness in E(X,ω) , J. Funct. Anal., Volume 256 (2009) no. 7, pp. 2113–2122 | MR | Zbl

[22] Donaldson, S.K. Symmetric spaces, Kähler geometry and Hamiltonian dynamics, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 13–33 | MR | Zbl

[23] Guedj, V.; Zeriahi, A. The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal., Volume 250 (2007) no. 2, pp. 442–482 | DOI | MR | Zbl

[24] Hamilton, R.S. Three-manifolds with positive Ricci curvature, J. Differ. Geom., Volume 17 (1982), pp. 255–306 | DOI | MR | Zbl

[25] Kolodziej, S. The Monge–Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J., Volume 52 (2003) no. 3, pp. 667–686 | DOI | MR | Zbl

[26] Mabuchi, T. Some symplectic geometry on compact Kähler manifolds I, Osaka J. Math., Volume 24 (1987), pp. 227–252 | MR | Zbl

[27] McFeron, D. The Mabuchi metric and the Kähler–Ricci flow, Proc. Am. Math. Soc., Volume 142 (2014) no. 3, pp. 1005–1012 | DOI | MR | Zbl

[28] Phong, D.H.; Song, J.; Sturm, J.; Weinkove, B. The Kähler–Ricci flow and the ¯-operator on vector fields, J. Differ. Geom., Volume 81 (2009), pp. 631–647 | DOI | MR | Zbl

[29] Rana, I.K. An Introduction to Measure and Integration, Graduate Studies in Mathematics, vol. 45, American Mathematical Society, Providence, RI, 2002 | MR | Zbl

[30] Rubinstein, Y.A. On the construction of Nadel multiplier ideal sheaves and the limiting behavior of the Ricci flow, Trans. Am. Math. Soc., Volume 361 (2009), pp. 5839–5850 | DOI | MR | Zbl

[31] Semmes, S. Complex Monge–Ampère and symplectic manifolds, Am. J. Math., Volume 114 (1992), pp. 495–550 | DOI | MR | Zbl

[32] Streets, J. Long time existence of minimizing movement solutions of Calabi flow, Adv. Math., Volume 259 (2014), pp. 688–729 | DOI | MR | Zbl

[33] Streets, J. The consistency and convergence of K-energy minimizing movements | arXiv | DOI | Zbl

[34] Tian, G.; Zhu, X.H. Convergence of Kähler–Ricci flow, J. Am. Math. Soc., Volume 20 (2007), pp. 675–699 | MR | Zbl

[35] Yau, S.T. On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation, I, Commun. Pure Appl. Math., Volume 31 (1978), pp. 339–411 | MR | Zbl

Cité par Sources :