On the wellposedness of the KdV/KdV2 equations and their frequency maps
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 101-160.

In form of a case study for the KdV and the KdV2 equations, we present a novel approach of representing the frequencies of integrable PDEs which allows to extend them analytically to spaces of low regularity and to study their asymptotics. Applications include convexity properties of the Hamiltonians and wellposedness results in spaces of low regularity. In particular, it is proved that on Hs the KdV2 equation is C0-wellposed if s0 and illposed (in a strong sense) if s<0.

DOI : 10.1016/j.anihpc.2017.03.003
Classification : 37K10, 35Q53, 35D05
Mots clés : KdV equation, KdV2 equation, Frequency map, Well-posedness, Ill-posedness, Convexity properties of Hamiltonians of integrable PDEs
@article{AIHPC_2018__35_1_101_0,
     author = {Kappeler, Thomas and Molnar, Jan-Cornelius},
     title = {On the wellposedness of the {KdV/KdV2} equations and their frequency maps},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {101--160},
     publisher = {Elsevier},
     volume = {35},
     number = {1},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.03.003},
     mrnumber = {3739929},
     zbl = {1406.37050},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2017.03.003/}
}
TY  - JOUR
AU  - Kappeler, Thomas
AU  - Molnar, Jan-Cornelius
TI  - On the wellposedness of the KdV/KdV2 equations and their frequency maps
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 101
EP  - 160
VL  - 35
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2017.03.003/
DO  - 10.1016/j.anihpc.2017.03.003
LA  - en
ID  - AIHPC_2018__35_1_101_0
ER  - 
%0 Journal Article
%A Kappeler, Thomas
%A Molnar, Jan-Cornelius
%T On the wellposedness of the KdV/KdV2 equations and their frequency maps
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 101-160
%V 35
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2017.03.003/
%R 10.1016/j.anihpc.2017.03.003
%G en
%F AIHPC_2018__35_1_101_0
Kappeler, Thomas; Molnar, Jan-Cornelius. On the wellposedness of the KdV/KdV2 equations and their frequency maps. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 1, pp. 101-160. doi : 10.1016/j.anihpc.2017.03.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2017.03.003/

[1] Bättig, D.; Kappeler, T.; Mityagin, B. On the Korteweg–de Vries equation: frequencies and initial value problem, Pac. J. Math., Volume 181 (1997) no. 1, pp. 1–55 | DOI | MR | Zbl

[2] Bikbaev, R.F.; Kuksin, S.B. On the parametrization of finite-gap solutions by frequency and wavenumber vectors and a theorem of I. Krichever, Lett. Math. Phys., Volume 28 (1993) no. 2, pp. 115–122 | DOI | MR | Zbl

[3] Bourgain, J. Proceedings of the Conference in Honor of Jean-Pierre Kahane (1995), pp. 17–86 http://www.ams.org/mathscinet-getitem?mr=MR1364878 (Orsay, 1993) | MR | Zbl

[4] Bourgain, J. Periodic Korteweg de Vries equation with measures as initial data, Sel. Math. New Ser., Volume 3 (1997) no. 2, pp. 115–159 | DOI | MR | Zbl

[5] Christ, M.; Colliander, J.; Tao, T. Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Am. J. Math., Volume 125 (2003) no. 6, pp. 1235–1293 http://muse.jhu.edu/journals/american_journal_of_mathematics/v125/125.6christ.pdf | DOI | MR | Zbl

[6] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Sharp global well-posedness for KdV and modified KdV on R and T, J. Am. Math. Soc., Volume 16 (2003) no. 3, pp. 705–749 (electronic) | DOI | MR | Zbl

[7] Craig, W.; Guyenne, P.; Kalisch, H. Hamiltonian long-wave expansions for free surfaces and interfaces, Commun. Pure Appl. Math., Volume 58 (2005) no. 12, pp. 1587–1641 | DOI | MR | Zbl

[8] Delpech, S. A short proof of Pitt's compactness theorem, Proc. Am. Math. Soc., Volume 137 (2009) no. 4, pp. 1371–1372 | DOI | MR | Zbl

[9] Djakov, P.; Mityagin, B. Spectral gaps of Schrödinger operators with periodic singular potentials, Dyn. Partial Differ. Equ., Volume 6 (2009) no. 2, pp. 95–165 | DOI | MR | Zbl

[10] Erdoğan, M.B.; Tzirakis, N. Global smoothing for the periodic KdV evolution, Int. Math. Res. Not., Volume 20 (2013), pp. 4589–4614 http://www.ams.org/mathscinet-getitem?mr=MR3118870 | MR | Zbl

[11] Grébert, B.; Kappeler, T. The Defocusing NLS Equation and Its Normal Form, European Mathematical Society (EMS), Zürich, 2014 | DOI | MR | Zbl

[12] Grünrock, A. On the hierarchies of higher order mKdV and KdV equations, Cent. Eur. J. Math., Volume 8 (2010) no. 3, pp. 500–536 | DOI | MR | Zbl

[13] Guo, Z.; Kwak, C.; Kwon, S. Rough solutions of the fifth-order KdV equations, J. Funct. Anal., Volume 265 (2013) no. 11, pp. 2791–2829 | DOI | MR | Zbl

[14] Kappeler, T.; Maspero, A.; Molnar, J.C.; Topalov, P. On the convexity of the KdV Hamiltonian, Commun. Math. Phys. (2016), pp. 1–46 | DOI | MR

[15] Kappeler, T.; Mityagin, B. Gap estimates of the spectrum of Hill's equation and action variables for KdV, Trans. Am. Math. Soc., Volume 351 (1999) no. 2, pp. 619–646 | DOI | MR | Zbl

[16] Kappeler, T.; Möhr, C. Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials, J. Funct. Anal., Volume 186 (2001) no. 1, pp. 62–91 | DOI | MR | Zbl

[17] Kappeler, T.; Möhr, C.; Topalov, P. Birkhoff coordinates for KdV on phase spaces of distributions, Sel. Math. New Ser., Volume 11 (2005) no. 1, pp. 37–98 | DOI | MR | Zbl

[18] Kappeler, T.; Pöschel, J. KdV & KAM, Springer, Berlin, 2003 http://www.ams.org/mathscinet-getitem?mr=MR1997070 | DOI | MR | Zbl

[19] Kappeler, T.; Schaad, B.; Topalov, P. Qualitative features of periodic solutions of KdV, Commun. Partial Differ. Equ., Volume 38 (2013) no. 9, pp. 1626–1673 | DOI | MR | Zbl

[20] Kappeler, T.; Serier, F.; Topalov, P. On the symplectic phase space of KdV, Proc. Am. Math. Soc., Volume 136 (2008) no. 5, pp. 1691–1698 | DOI | MR | Zbl

[21] Kappeler, T.; Topalov, P. Riccati representation for elements in H1(T) and its applications, Pliska Stud. Math. Bulgar., Volume 15 (2003), pp. 171–188 http://www.ams.org/mathscinet-getitem?mr=MR2071691 | MR | Zbl

[22] Kappeler, T.; Topalov, P. Global wellposedness of KdV in H1(T,R) , Duke Math. J., Volume 135 (2006) no. 2, pp. 327–360 | DOI | MR | Zbl

[23] Kato, T. Well-posedness for the fifth order KdV equation, Funkc. Ekvacioj, Volume 55 (2012) no. 1, pp. 17–53 | DOI | MR | Zbl

[24] Kenig, C.E.; Pilod, D. Well-posedness for the fifth-order KdV equation in the energy space, Trans. Am. Math. Soc., Volume 367 (2015) no. 4, pp. 2551–2612 | DOI | MR | Zbl

[25] Korotyaev, E. Characterization of the spectrum of Schrödinger operators with periodic distributions, Int. Math. Res. Not., Volume 2003 (2003) no. 37, pp. 2019–2031 | DOI | MR | Zbl

[26] Korotyaev, E.; Kuksin, S.B. KdV Hamiltonian as a function of actions, J. Dyn. Control Syst., Volume 22 (2016), pp. 661–682 | DOI | MR | Zbl

[27] Molinet, L. Sharp ill-posedness results for the KdV and mKdV equations on the torus, Adv. Math., Volume 230 (2012) no. 4–6, pp. 1895–1930 | DOI | MR | Zbl

[28] Molnar, J.C. On two-sided estimates for the nonlinear Fourier transform of KdV, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 6, pp. 3339–3356 | DOI | MR

[29] Saut, J.C. Quelques généralisations de l'équation de Korteweg–de Vries. II, J. Differ. Equ., Volume 33 (1979) no. 3, pp. 320–335 | DOI | MR | Zbl

[30] Savchuk, A.M.; Shkalikov, A.A. Sturm–Liouville operators with distribution potentials, Tr. Mosk. Mat. Obŝ., Volume 64 (2003), pp. 159–212 http://www.ams.org/mathscinet-getitem?mr=MR2030189 | MR | Zbl

[31] Zygmund, A. On singular integrals, Rend. Mat. Appl. (5), Volume 16 (1957), pp. 468–505 http://www.ams.org/mathscinet-getitem?mr=MR0096088 | MR | Zbl

Cité par Sources :