Symplectic factorization, Darboux theorem and ellipticity
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 327-356.

This manuscript identifies a maximal system of equations which renders the classical Darboux problem elliptic, thereby providing a selection criterion for its well posedness. Let f be a symplectic form close enough to ωm, the standard symplectic form on R2m. We prove existence of a diffeomorphism φ, with optimal regularity, satisfying

φ(ωm)=fanddφ;ωm=0.
We establish uniqueness of φ when the system is coupled with a Dirichlet datum. As a byproduct, we obtain, what we term symplectic factorization of vector fields, that any map u, satisfying appropriate assumptions, can be factored as:
u=χψwithψ(ωm)=ωm,dχ;ωm=0andχ+(χ)t>0;
moreover there exists a closed 2-form Φ such that χ=(δΦωm). Here, ♯ is the musical isomorphism and ♭ its inverse. We connect the above result to an L2-projection problem.

DOI : 10.1016/j.anihpc.2017.04.005
Mots clés : Symplectic decomposition, Darboux theorem for symplectic forms, Elliptic systems, Optimal transport of symplectic forms
@article{AIHPC_2018__35_2_327_0,
     author = {Dacorogna, B. and Gangbo, W. and Kneuss, O.},
     title = {Symplectic factorization, {Darboux} theorem and ellipticity},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {327--356},
     publisher = {Elsevier},
     volume = {35},
     number = {2},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.04.005},
     mrnumber = {3765545},
     zbl = {1476.58037},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2017.04.005/}
}
TY  - JOUR
AU  - Dacorogna, B.
AU  - Gangbo, W.
AU  - Kneuss, O.
TI  - Symplectic factorization, Darboux theorem and ellipticity
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 327
EP  - 356
VL  - 35
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2017.04.005/
DO  - 10.1016/j.anihpc.2017.04.005
LA  - en
ID  - AIHPC_2018__35_2_327_0
ER  - 
%0 Journal Article
%A Dacorogna, B.
%A Gangbo, W.
%A Kneuss, O.
%T Symplectic factorization, Darboux theorem and ellipticity
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 327-356
%V 35
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2017.04.005/
%R 10.1016/j.anihpc.2017.04.005
%G en
%F AIHPC_2018__35_2_327_0
Dacorogna, B.; Gangbo, W.; Kneuss, O. Symplectic factorization, Darboux theorem and ellipticity. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 327-356. doi : 10.1016/j.anihpc.2017.04.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2017.04.005/

[1] Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Commun. Pure Appl. Math., Volume 12 (1959), pp. 623–727 | DOI | MR | Zbl

[2] Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Commun. Pure Appl. Math., Volume 17 (1964), pp. 35–92 | DOI | MR | Zbl

[3] Bandyopadhyay, S.; Dacorogna, B. On the pullback equation φ(g)=f , Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009), pp. 1717–1741 | Numdam | MR | Zbl

[4] Banyaga, A., Enseign. Math., Volume vol. 20 (1974), pp. 127–131 | MR | Zbl

[5] Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions, Commun. Pure Appl. Math., Volume 44 (1991), pp. 375–417 | DOI | MR | Zbl

[6] Caffarelli, L.A.; Feldman, M.; McCann, R.J. Constructing optimal maps in Monge's transport problem as a limit of strictly convex costs, J. Am. Math. Soc., Volume 15 (2002), pp. 1–26 | MR | Zbl

[7] Champion, T.; De Pascale, L. The Monge problem for strictly convex norms in Rd , J. Eur. Math. Soc., Volume 12 (2010), pp. 1355–1369 | MR | Zbl

[8] Csato, G.; Dacorogna, B.; Kneuss, O. The Pullback Equation for Differential Forms, Birkhaüser, 2012 | MR | Zbl

[9] Csato, G.; Dacorogna, B.; Kneuss, O. The second order pullback equation, Calc. Var. Partial Differ. Equ., Volume 49 (2014), pp. 583–611 | DOI | MR | Zbl

[10] Dacorogna, B. Direct Methods in the Calculus of Variations, Springer-Verlag, New York, 2007 | MR | Zbl

[11] Dacorogna, B.; Gangbo, W.; Kneuss, O. Optimal transport of closed differential forms for convex costs, C. R. Math. Acad. Sci. Paris Ser I, Volume 353 (2015), pp. 1099–1104 | DOI | MR | Zbl

[12] B. Dacorogna, W. Gangbo, O. Kneuss, Optimal transport of closed differential forms for a non-convex cost.

[13] Darboux, G. Sur le problème de Pfaff, Bull. Sci. Math., Volume 6 (1882), pp. 4–36 (49–68) | Numdam

[14] Evans, L.C.; Gangbo, W. Differential equations methods for the Monge–Kantorovich mass transfer problem, Mem. Am. Math. Soc., Volume 137 (1999) no. 653, pp. 1–66 | MR | Zbl

[15] Gangbo, W. An elementary proof of the polar decomposition of vector-valued functions, Arch. Ration. Mech. Anal., Volume 128 (1995), pp. 380–399 | MR | Zbl

[16] Gangbo, W.; McCann, R.J. The geometry of optimal transportation, Acta Math., Volume 177 (1996), pp. 113–161 | DOI | MR | Zbl

[17] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977 | DOI | MR

[18] John, F. Partial Differential Equations, Springer-Verlag, New York, 1982 | MR

[19] Khesin, B.; Lee, P. A nonholonomic Moser theorem and optimal transport, J. Symplectic Geom., Volume 7 (2009), pp. 381–414 | DOI | MR | Zbl

[20] McCann, R. Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., Volume 11 (2001), pp. 589–608 | DOI | MR | Zbl

[21] Moser, J. On the volume elements on a manifold, Trans. Am. Math. Soc., Volume 120 (1965), pp. 286–294 | DOI | MR | Zbl

[22] F. Rezakhanlou, Optimal transport problem and contact structures, preprint, 2015.

Cité par Sources :