Doubly nonlocal Cahn–Hilliard equations
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 357-392.

We consider a doubly nonlocal nonlinear parabolic equation which describes phase-segregation of a two-component material in a bounded domain. This model is a more general version than the recent nonlocal Cahn–Hilliard equation proposed by Giacomin and Lebowitz [26], such that it reduces to the latter under certain conditions. We establish well-posedness results along with regularity and long-time results in the case when the interaction between the two levels of nonlocality is strong-to-weak.

DOI : 10.1016/j.anihpc.2017.05.001
Classification : 35R09, 37L30, 82C24
Mots clés : Nonlocal Cahn–Hilliard, phase transition, solutions, doubly nonlocal equation, anomalous transport, fractional Laplace
@article{AIHPC_2018__35_2_357_0,
     author = {Gal, Ciprian G.},
     title = {Doubly nonlocal {Cahn{\textendash}Hilliard} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {357--392},
     publisher = {Elsevier},
     volume = {35},
     number = {2},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.05.001},
     mrnumber = {3765546},
     zbl = {1387.35595},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2017.05.001/}
}
TY  - JOUR
AU  - Gal, Ciprian G.
TI  - Doubly nonlocal Cahn–Hilliard equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 357
EP  - 392
VL  - 35
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2017.05.001/
DO  - 10.1016/j.anihpc.2017.05.001
LA  - en
ID  - AIHPC_2018__35_2_357_0
ER  - 
%0 Journal Article
%A Gal, Ciprian G.
%T Doubly nonlocal Cahn–Hilliard equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 357-392
%V 35
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2017.05.001/
%R 10.1016/j.anihpc.2017.05.001
%G en
%F AIHPC_2018__35_2_357_0
Gal, Ciprian G. Doubly nonlocal Cahn–Hilliard equations. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 2, pp. 357-392. doi : 10.1016/j.anihpc.2017.05.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2017.05.001/

[1] Abels, H.; Bosia, S.; Grasselli, M. Cahn–Hilliard equation with nonlocal singular free energies, Ann. Mat. Pura Appl., Volume 194 (2015), pp. 1071–1106 | DOI | MR | Zbl

[2] Abels, H.; Wilke, M. Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy, Nonlinear Anal., Volume 67 (2007), pp. 3176–3193 | DOI | MR | Zbl

[3] Bates, P.W.; Han, J. The Neumann boundary problem for a nonlocal Cahn–Hilliard equation, J. Differ. Equ., Volume 212 (2005), pp. 235–277 | DOI | MR | Zbl

[4] Bates, P.W.; Han, J. The Dirichlet boundary problem for a nonlocal Cahn–Hilliard equation, J. Math. Anal. Appl., Volume 311 (2005), pp. 289–312 | DOI | MR | Zbl

[5] Cholewa, J.W.; Dlotko, T. Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000 | DOI | MR | Zbl

[6] Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., Volume 28 (1958), pp. 258–267 | Zbl

[7] Cherfils, L.; Miranville, A.; Zelik, S. The Cahn–Hilliard equation with logarithmic potentials, Milan J. Math., Volume 79 (2011), pp. 561–596 | DOI | MR | Zbl

[8] Colli, P.; Frigeri, S.; Grasselli, M. Global existence of weak solutions to a nonlocal Cahn–Hilliard–Navier–Stokes system, J. Math. Anal. Appl., Volume 386 (2012), pp. 428–444 | DOI | MR | Zbl

[9] Debussche, A.; Dettori, L. On the Cahn–Hilliard equation with a logarithmic free energy, Nonlinear Anal., Volume 24 (1995), pp. 1491–1514 | DOI | MR | Zbl

[10] Du, Q.; Mengesha, T. Analysis of a scalar nonlocal peridynamic model with a sign changing kernel, Discrete Contin. Dyn. Syst., Ser. B, Volume 5 (2013), pp. 1415–1437 | MR | Zbl

[11] Du, Q.; Mengesha, T. The bond-based peridynamic system with Dirichlet-type volume constraint, Proc. R. Soc. Edinb. A, Volume 144 (2014), pp. 161–186 | MR | Zbl

[12] Elliott, C.M. Mathematical Models for Phase Change Problems, Int. Ser. Numer. Math., Volume vol. 88, Birkhäuser, Basel (1989), pp. 35–73 (Obidos, 1988) | MR | Zbl

[13] Elliott, C.M.; Garcke, H. On the Cahn–Hilliard equation with degenerate mobility, SIAM J. Math. Anal., Volume 27 (1996), pp. 404–423 | DOI | MR | Zbl

[14] Elliott, C.M.; Luckhaus, S. A Generalized Diffusion Equation for Phase Separation of a Multi-Component Mixture with Interfacial Energy, University of Bonn, 1991 (SFB 256 Preprint No. 195)

[15] Frigeri, S.; Grasselli, M. Global and trajectory attractors for a nonlocal Cahn–Hilliard system, J. Dyn. Differ. Equ., Volume 24 (2012), pp. 827–856 | DOI | MR | Zbl

[16] Frigeri, S.; Gal, C.G.; Grasselli, M. On nonlocal Cahn–Hilliard–Navier–Stokes systems in two dimensions, J. Nonlinear Sci., Volume 26 (2016), pp. 847–893 | DOI | MR | Zbl

[17] Frigeri, S.; Grasselli, M. Nonlocal Cahn–Hilliard–Navier–Stokes systems with singular potentials, Dyn. Partial Differ. Equ., Volume 9 (2012), pp. 273–304 | DOI | MR | Zbl

[18] Frigeri, S.; Grasselli, M.; Krejčí, P. Strong solutions for two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems, J. Differ. Equ., Volume 255 (2013), pp. 2587–2614 | DOI | MR | Zbl

[19] Frigeri, S.; Grasselli, M.; Rocca, E. A diffuse interface model for two-phase incompressible flows with nonlocal interactions and nonconstant mobility, Nonlinearity, Volume 28 (2015), pp. 1257–1293 | DOI | MR

[20] Feireisl, E.; Simondon, F. Convergence for semilinear degenerate parabolic equations in several space dimensions, J. Dyn. Differ. Equ., Volume 12 (2000), pp. 647–673 | DOI | MR | Zbl

[21] Gajewski, H.; Zacharias, K. On a nonlocal phase separation model, J. Math. Anal. Appl., Volume 286 (2003), pp. 11–31 | DOI | MR | Zbl

[22] Gal, C.G. On an inviscid model for incompressible two-phase flows with nonlocal interaction, J. Math. Fluid Mech., Volume 18 (2016), pp. 659–677 | MR

[23] Gal, C.G. On the strong-to-strong interaction case for doubly nonlocal Cahn–Hilliard equations, Discrete Contin. Dyn. Syst., Volume 37 (2017), pp. 131–167 | MR | Zbl

[24] Gal, C.G.; Grasselli, M. Longtime behavior of nonlocal Cahn–Hilliard equations, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 1, pp. 145–179 | MR | Zbl

[25] Gal, C.G.; Warma, M. Reaction–diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions, Discrete Contin. Dyn. Syst., Volume 36 (2016), pp. 1279–1319 | MR | Zbl

[26] Giacomin, G.; Lebowitz, J.L. Phase segregation dynamics in particle systems with long range interactions, I. Macroscopic limits, J. Stat. Phys., Volume 87 (1997), pp. 37–61 | DOI | MR | Zbl

[27] Giacomin, G.; Lebowitz, J.L. Phase segregation dynamics in particle systems with long range interactions, II. Phase motion, SIAM J. Appl. Math., Volume 58 (1998), pp. 1707–1729 | MR | Zbl

[28] Guan, Q.Y. Integration by parts formula for regional fractional Laplacian, Commun. Math. Phys., Volume 266 (2006), pp. 289–329 | MR | Zbl

[29] Guan, Q.Y.; Ma, Z.M. Reflected symmetric α-stable processes and regional fractional Laplacian, Probab. Theory Relat. Fields, Volume 134 (2006), pp. 649–694 | MR | Zbl

[30] Gurtin, M.E. Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance, Phys. D, Volume 92 (1996), pp. 178–192 | DOI | MR | Zbl

[31] Kenmochi, N.; Niezgodka, M.; Pawlow, I. Subdifferential operator approach to the Cahn–Hilliard equation with constraint, J. Differ. Equ., Volume 117 (1995), pp. 320–356 | DOI | MR | Zbl

[32] Londen, S.-O.; Petzeltová, H. Convergence of solutions of a non-local phase-field system, Discrete Contin. Dyn. Syst., Ser. S, Volume 4 (2011), pp. 653–670 | MR | Zbl

[33] Londen, S.-O.; Petzeltová, H. Regularity and separation from potential barriers for a non-local phase-field system, J. Math. Anal. Appl., Volume 379 (2011), pp. 724–735 | MR | Zbl

[34] Miranville, A.; Zelik, S. Robust exponential attractors for Cahn–Hilliard type equations with singular potentials, Math. Methods Appl. Sci., Volume 27 (2004), pp. 545–582 | DOI | MR | Zbl

[35] Novick-Cohen, A. The Cahn–Hilliard equation, Evolutionary Equations, vol. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 201–228 | MR | Zbl

[36] Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012), pp. 521–573 | DOI | MR | Zbl

[37] Neumana, S.P.; Tartakovsky, D.M. Perspective on theories of non-Fickian transport in heterogeneous media, Adv. Water Resour., Volume 32 (2009), pp. 670–680

[38] Vlahos, L.; Isliker, H.; Kominis, Y.; Hizonidis, K.; Bountis, T. Normal and anomalous diffusion: a tutorial, Order and Chaos, vol. 10, Patras University Press, 2008

[39] Warma, M. The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., Volume 42 (2015), pp. 499–547 | DOI | MR | Zbl

Cité par Sources :