Well-posedness and exponential equilibration of a volume-surface reaction–diffusion system with nonlinear boundary coupling
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 3, pp. 643-673.

We consider a model system consisting of two reaction–diffusion equations, where one species diffuses in a volume while the other species diffuses on the surface which surrounds the volume. The two equations are coupled via a nonlinear reversible Robin-type boundary condition for the volume species and a matching reversible source term for the boundary species. As a consequence of the coupling, the total mass of the two species is conserved. The considered system is motivated for instance by models for asymmetric stem cell division.

Firstly we prove the existence of a unique weak solution via an iterative method of converging upper and lower solutions to overcome the difficulties of the nonlinear boundary terms. Secondly, our main result shows explicit exponential convergence to equilibrium via an entropy method after deriving a suitable entropy entropy-dissipation estimate for the considered nonlinear volume-surface reaction–diffusion system.

DOI : 10.1016/j.anihpc.2017.07.002
Classification : 35K61, 35A01, 35B40, 35K57
Mots clés : Volume-surface reaction–diffusion, Nonlinear boundary conditions, Global existence, Exponential convergence to equilibrium
@article{AIHPC_2018__35_3_643_0,
     author = {Fellner, Klemens and Latos, Evangelos and Tang, Bao Quoc},
     title = {Well-posedness and exponential equilibration of a volume-surface reaction{\textendash}diffusion system with nonlinear boundary coupling},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {643--673},
     publisher = {Elsevier},
     volume = {35},
     number = {3},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.07.002},
     mrnumber = {3778646},
     zbl = {1392.35186},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2017.07.002/}
}
TY  - JOUR
AU  - Fellner, Klemens
AU  - Latos, Evangelos
AU  - Tang, Bao Quoc
TI  - Well-posedness and exponential equilibration of a volume-surface reaction–diffusion system with nonlinear boundary coupling
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 643
EP  - 673
VL  - 35
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2017.07.002/
DO  - 10.1016/j.anihpc.2017.07.002
LA  - en
ID  - AIHPC_2018__35_3_643_0
ER  - 
%0 Journal Article
%A Fellner, Klemens
%A Latos, Evangelos
%A Tang, Bao Quoc
%T Well-posedness and exponential equilibration of a volume-surface reaction–diffusion system with nonlinear boundary coupling
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 643-673
%V 35
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2017.07.002/
%R 10.1016/j.anihpc.2017.07.002
%G en
%F AIHPC_2018__35_3_643_0
Fellner, Klemens; Latos, Evangelos; Tang, Bao Quoc. Well-posedness and exponential equilibration of a volume-surface reaction–diffusion system with nonlinear boundary coupling. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 3, pp. 643-673. doi : 10.1016/j.anihpc.2017.07.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2017.07.002/

[1] Gilbarg, D.; Trudinger, N. Elliptic Partial Differential Equations of Second Order, Springer, 1983 | MR | Zbl

[2] Betschinger, J.; Mechtler, K.; Knoblich, J. The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl, Nature, Volume 422 (2003), pp. 326–329 | DOI

[3] Mayer, B.; Emery, G.; Berdnik, D.; Wirtz-Peitz, F.; Knoblich, J. Quantitative analysis of protein dynamics during asymmetric cell division, Curr. Biol., Volume 15 (2005), pp. 1847–1854 | DOI

[4] Wirtz-Peitz, F.; Nashimura, T.; Knoblich, J. Linking cell cycle to asymmetric division: Aurora-A phosphorylates the Par complex to regulate numb localization, Cell, Volume 135 (2008), pp. 161–173 | DOI

[5] Fellner, K.; Rosenberger, S.; Tang, B. Quasi-steady-state approximation and numerical simulation for a volume-surface reaction–diffusion system, Commun. Math. Sci., Volume 14 (2016), pp. 1553–1580 | DOI | MR | Zbl

[6] Rosenberger, S. A Reaction–Diffusion Model of Lgl Localization During Asymmetric Cell Division, University of Graz, 2013 (Master-thesis)

[7] Alberta, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, Garland Science, New York, 2002

[8] Elliott, C.; Ranner, T. Finite element analysis for a coupled bulk-surface partial differential equation, IMA J. Numer. Anal., Volume 33 (2013), pp. 377–402 | DOI | MR | Zbl

[9] Friedmann, E.; Neumann, R.; Rannacher, J. Well-posedness of a linear spatio-temporal model of the JAK2/STAT5 signaling pathway, Commun. Math. Anal., Volume 15 (2013), pp. 76–102 | MR | Zbl

[10] Kwon, Y.-I.; Derby, J.J. Modeling the coupled effects of interfacial and bulk phenomena during solution crystal growth, J. Cryst. Growth, Volume 230 (2001), pp. 328–335

[11] Medvedev, E.S.; Stuchebrukhov, A.A. Proton diffusion along biological membranes, J. Phys. Condens. Matter, Volume 23 (2011) | DOI

[12] Novak, I.L.; Gao, F.; Choi, Y.-S.; Resasco, D.; Schaff, J.C.; Slepchenko, B.M. Diffusion on a curved surface coupled to diffusion in the volume: application to cell biology, J. Comput. Phys., Volume 226 (2007), pp. 1271–1290 | DOI | MR | Zbl

[13] Berestycki, H.; Roquejoffre, J.-M.; Rossi, L. The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol., Volume 66 (2013), pp. 743–766 | DOI | MR | Zbl

[14] Berestycki, H.; Roquejoffre, J.-M.; Rossi, L. Fisher-KPP propagation in the presence of a line: further effects, Nonlinearity, Volume 26 (2013), pp. 2623–2640 | DOI | MR | Zbl

[15] Berestycki, H.; Coulon, A.; Roquejoffre, J.; Rossi, L. The effect of a line with non-local diffusion on Fisher-KPP propagation, Math. Models Methods Appl. Sci., Volume 25 (2015), pp. 2519–2562 | DOI | MR

[16] Kwon, Y.-I.; Derby, J. Modeling the coupled effects of interfacial and bulk phenomena during solution crystal growth, J. Cryst. Growth, Volume 230 (2001), pp. 328–335

[17] Madzvamuse, A.; Chung, A.H.; Venkataraman, C. Stability Analysis and Simulations of Coupled Bulk-Surface Reaction–Diffusion Systems, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., Volume 471 (2015) (The Royal Society) | MR

[18] Pao, C. Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992 | MR | Zbl

[19] Bedjaoui, N.; Souplet, P. Critical blowup exponents for a system of reaction–diffusion equations with absorption, Z. Angew. Math. Phys., Volume 53 (2002), pp. 197–210 | DOI | MR | Zbl

[20] Carrillo, J.; Vazquez, J. Fine asymptotics for fast diffusion equations, Commun. Partial Differ. Equ., Volume 28 (2003), pp. 1023–1056 | DOI | MR | Zbl

[21] Pino, M.D.; Dolbeault, J. Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl., Volume 81 (2002), pp. 847–875 | MR | Zbl

[22] Desvillettes, L.; Villani, C. On the spatially homogeneous Landau equation for hard potentials. II. H-theorem and applications, Commun. Partial Differ. Equ., Volume 25 (2000), pp. 261–298 | MR | Zbl

[23] Toscani, G.; Villani, C. Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Commun. Math. Phys., Volume 203 (1999), pp. 667–706 | DOI | MR | Zbl

[24] Toscani, G.; Villani, C. On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds, J. Stat. Phys., Volume 98 (2000), pp. 1279–1309 | DOI | MR | Zbl

[25] Villani, C. Cercignani's conjecture is sometimes true and always almost true, Commun. Math. Phys., Volume 234 (2003), pp. 455–490 | DOI | MR | Zbl

[26] Desvillettes, L.; Villani, C. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker–Planck equation, Commun. Pure Appl. Math., Volume 54 (2001), pp. 1–42 | DOI | MR | Zbl

[27] Desvillettes, L.; Villani, C. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., Volume 159 (2005), pp. 245–316 | DOI | MR | Zbl

[28] Fellner, K.; Neumann, L.; Schmeiser, C. Convergence to global equilibrium for spatially inhomogeneous kinetic models of non-micro-reversible processes, Monatshefte Math., Volume 141 (2004), pp. 289–299 | DOI | MR | Zbl

[29] Carrillo, J.; Desvillettes, L.; Fellner, K. Exponential decay towards equilibrium for the inhomogeneous Aizenman–Bak model, Commun. Math. Phys., Volume 278 (2008), pp. 433–451 | DOI | MR | Zbl

[30] Carrillo, J.; Desvillettes, L.; Fellner, K. Fast-reaction limit for the inhomogeneous Aizenman–Bak model, Kinet. Relat. Models, Volume 1 (2008), pp. 127–137 | DOI | MR | Zbl

[31] Glitzky, A.; Gröger, K.; Hünlich, R. Free energy and dissipation rate for reaction–diffusion processes of electrically charged species, Appl. Anal., Volume 60 (1996), pp. 201–217 | DOI | MR | Zbl

[32] Glitzky, A.; Hünlich, R. Energetic estimates and asymptotics for electro-reaction–diffusion systems, Z. Angew. Math. Mech., Volume 77 (1997), pp. 823–832 | DOI | MR | Zbl

[33] K. Gröger, Free energy estimates and asymptotic behaviour of reaction–diffusion processes, Preprint 20, Institut für Angewandte Analysis und Stochastik, Berlin, 1992.

[34] Desvillettes, L.; Fellner, K. Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations, J. Math. Anal. Appl., Volume 319 (2006), pp. 157–176 | DOI | MR | Zbl

[35] Desvillettes, L.; Fellner, K. Entropy methods for reaction–diffusion equations: degenerate diffusion, Discrete Contin. Dyn. Syst. Suppl. Spec. (2007), pp. 304–312 | MR | Zbl

[36] Desvillettes, L.; Fellner, K. Entropy methods for reaction–diffusion equations: slowly growing a-priori bounds, Rev. Mat. Iberoam., Volume 24 (2008), pp. 407–431 | MR | Zbl

[37] Mielke, A.; Haskovec, J.; Markowich, P.A. On uniform decay of the entropy for reaction–diffusion systems, J. Dyn. Differ. Equ., Volume 27 (2015), pp. 897–928 | DOI | MR | Zbl

[38] Desvillettes, L.; Fellner, K.; Tang, B.Q. Trend to equilibrium for reaction–diffusion systems arising from complex balanced chemical reaction networks, SIAM J. Math. Anal., Volume 49 (2017), pp. 2666–2709 | DOI | MR | Zbl

[39] Fellner, K.; Tang, B. Explicit exponential convergence to equilibrium for nonlinear reaction–diffusion systems with detailed balance condition, Nonlinear Analysis, Volume 159 (2017), pp. 145–180 | DOI | MR | Zbl

[40] Cañizo, J.; Desvillettes, L.; Fellner, K. Improved duality estimates and applications to reaction–diffusion equations, Commun. Partial Differ. Equ., Volume 39 (2014), pp. 1185–1204 | DOI | MR | Zbl

[41] Taylor, M. Partial Differential Equations I: Basic Theory, Springer, 1999

[42] Francesco, M.D.; Fellner, K.; Markowich, P. The entropy dissipation method for inhomogeneous reaction–diffusion systems, Proc. R. Soc. A, Volume 464 (2008), pp. 3272–3300 | DOI | MR | Zbl

[43] Csiszár, I. Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis con Markoffschen Ketten, Magy. Tud. Akad. Mat. Kut. Intéz. Közl., Volume 8 (1963), pp. 85–108 | MR | Zbl

[44] Denk, R.; Hieber, M.; Prüss, J., Mem. Amer. Math. Soc. (2003), pp. 166 | MR | Zbl

[45] Denk, R.; Hieber, M.; Prüss, J. Optimal LpLq-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., Volume 257 (2007), pp. 193–224 | DOI | MR | Zbl

[46] Nittka, R. Elliptic and Parabolic Problems with Robin Boundary Conditions in Lipschitz Domains, Universität Ulm, 2010 (PhD thesis)

Cité par Sources :