The Cahn–Hilliard–Hele–Shaw system with singular potential
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 1079-1118.

The Cahn–Hilliard–Hele–Shaw system is a fundamental diffuse-interface model for an incompressible binary fluid confined in a Hele–Shaw cell. It consists of a convective Cahn–Hilliard equation in which the velocity u is subject to a Korteweg force through Darcy's equation. In this paper, we aim to investigate the system with a physically relevant potential (i.e., of logarithmic type). This choice ensures that the (relative) concentration difference φ takes values within the admissible range. To the best of our knowledge, essentially all the available contributions in the literature are concerned with a regular approximation of the singular potential. Here we first prove the existence of a global weak solution with finite energy that satisfies an energy dissipative property. Then, in dimension two, we further obtain the uniqueness and regularity of global weak solutions. In particular, we show that any two-dimensional weak solution satisfies the so-called strict separation property, namely, if φ is not a pure state at some initial time, then it stays instantaneously away from the pure states. When the spatial dimension is three, we prove the existence of a unique global strong solution, provided that the initial datum is regular enough and sufficiently close to any local minimizer of the free energy. This also yields the local Lyapunov stability of the local minimizer itself. Finally, we prove that under suitable assumptions any global solution converges to a single equilibrium as time goes to infinity.

DOI : 10.1016/j.anihpc.2017.10.002
Classification : 35B40, 35B41, 35Q35, 76D27
Mots clés : Cahn–Hilliard equation, Darcy's equation, Singular potential, Well-posedness, Regularity, Long-time behavior
@article{AIHPC_2018__35_4_1079_0,
     author = {Giorgini, Andrea and Grasselli, Maurizio and Wu, Hao},
     title = {The {Cahn{\textendash}Hilliard{\textendash}Hele{\textendash}Shaw} system with singular potential},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1079--1118},
     publisher = {Elsevier},
     volume = {35},
     number = {4},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.10.002},
     mrnumber = {3795027},
     zbl = {1394.35356},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2017.10.002/}
}
TY  - JOUR
AU  - Giorgini, Andrea
AU  - Grasselli, Maurizio
AU  - Wu, Hao
TI  - The Cahn–Hilliard–Hele–Shaw system with singular potential
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1079
EP  - 1118
VL  - 35
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2017.10.002/
DO  - 10.1016/j.anihpc.2017.10.002
LA  - en
ID  - AIHPC_2018__35_4_1079_0
ER  - 
%0 Journal Article
%A Giorgini, Andrea
%A Grasselli, Maurizio
%A Wu, Hao
%T The Cahn–Hilliard–Hele–Shaw system with singular potential
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1079-1118
%V 35
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2017.10.002/
%R 10.1016/j.anihpc.2017.10.002
%G en
%F AIHPC_2018__35_4_1079_0
Giorgini, Andrea; Grasselli, Maurizio; Wu, Hao. The Cahn–Hilliard–Hele–Shaw system with singular potential. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 4, pp. 1079-1118. doi : 10.1016/j.anihpc.2017.10.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2017.10.002/

[1] Abels, H. On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., Volume 194 (2009), pp. 463–506 | DOI | MR | Zbl

[2] Abels, H.; Wilke, M. Convergence to equilibrium for the Cahn–Hilliard equation with a logarithmic free energy, Nonlinear Anal., Volume 67 (2007), pp. 3176–3193 | DOI | MR | Zbl

[3] Amann, H. Compact embedding of vector-valued Sobolev and Besov spaces, Glas. Mat. Ser. III, Volume 35 (2000), pp. 161–177 | MR | Zbl

[4] Ball, J.M. Continuity properties and global attractors of generalized semiflows and the Navier–Stokes equation, J. Nonlinear Sci., Volume 7 (1997), pp. 475–502 (Erratum J. Nonlinear Sci., 8, 1998, 233) | MR | Zbl

[5] Bosia, S.; Conti, M.; Grasselli, M. On the Cahn–Hilliard–Brinkman system, Commun. Math. Sci., Volume 13 (2015), pp. 1541–1567 | DOI | MR | Zbl

[6] Brézis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 | MR | Zbl

[7] Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., Volume 2 (1958), pp. 258–267 | Zbl

[8] Cazenave, T.; Haraux, A. An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and Its Applications, vol. 13, The Clarendon Press, Oxford University Press, New York, 1998 | MR | Zbl

[9] M. Conti, A. Giorgini, On the Cahn–Hilliard–Brinkman system with singular potential and nonconstant viscosity, preprint, 2016.

[10] Dai, M.; Feireisl, E.; Rocca, E.; Schimperna, G.; Schonbek, M.E. Analysis of a diffuse interface model of multispecies tumor growth, Nonlinearity, Volume 30 (2017), pp. 1639–1658 | MR | Zbl

[11] L. Dedé, H. Garcke, K.F. Lam, A Hele–Shaw–Cahn–Hilliard model for incompressible two-phase flows with different densities, MOX-Report No. 04/2017. | MR

[12] Della Porta, F.; Grasselli, M. On the nonlocal Cahn–Hilliard–Brinkman and Cahn–Hilliard–Hele–Shaw systems, Commun. Pure Appl. Anal., Volume 15 (2016), pp. 299–317 (Erratum Commun. Pure Appl. Anal., 16, 2017, 369–372) | Zbl

[13] Fei, M. Global sharp interface limit of the Hele–Shaw–Cahn–Hilliard system, Math. Methods Appl. Sci., Volume 40 (2017), pp. 833–852 | MR | Zbl

[14] Feng, X.; Wise, S. Analysis of a Darcy–Cahn–Hilliard diffuse interface model for the Hele–Shaw flow and its fully discrete finite element approximation, SIAM J. Numer. Anal., Volume 50 (2012), pp. 1320–1343 | DOI | MR | Zbl

[15] Frigeri, S.; Grasselli, M. Nonlocal Cahn–Hilliard–Navier–Stokes systems with singular potential, Dyn. Partial Differ. Equ., Volume 24 (2012), pp. 827–856 | MR | Zbl

[16] Gal, C.G.; Giorgini, A.; Grasselli, M. The nonlocal Cahn–Hilliard equation with singular potential: well-posedness, regularity and strict separation property, J. Differ. Equ., Volume 263 (2017), pp. 5253–5297 | MR | Zbl

[17] Garcke, H.; Lam, K.F. Global weak solutions and asymptotic limits of a Cahn–Hiliard–Darcy system modelling tumour growth, AIMS Math., Volume 1 (2016), pp. 318–360 | DOI

[18] Giga, Y.; Miyakawa, T. Solutions in Lr of the Navier–Stokes initial value problem, Arch. Ration. Mech. Anal., Volume 89 (1985), pp. 267–281 | DOI | MR | Zbl

[19] Giorgini, A.; Grasselli, M.; Miranville, A. The Cahn–Hiliard–Oono equation with singular potential, Math. Models Methods Appl. Sci., Volume 27 (2017), pp. 2485–2510 | DOI | MR | Zbl

[20] Girault, V.; Raviart, P.A. Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986 | DOI | MR | Zbl

[21] Han, D.; Wang, X.; Wu, H. Existence and uniqueness of global weak solutions to a Cahn–Hilliard–Stokes–Darcy system for two phase incompressible flows in karstic geometry, J. Differ. Equ., Volume 257 (2014), pp. 3887–3933 | MR | Zbl

[22] Hohenberg, P.C.; Halperin, B.I. Theory of dynamic critical phenomena, Rev. Mod. Phys., Volume 49 (1977), pp. 435–479 | DOI

[23] Jiang, J.; Wu, H.; Zheng, S. Well-posedness and long-time behavior of a non-autonomous Cahn–Hilliard–Darcy system with mass source modeling tumor growth, J. Differ. Equ., Volume 259 (2015), pp. 3032–3077 | DOI | MR | Zbl

[24] Kenmochi, N.; Niezgódka, M.; Pawlow, I. Subdifferential operator approach to the Cahn–Hilliard equation with constraint, J. Differ. Equ., Volume 117 (1995), pp. 320–356 | DOI | MR | Zbl

[25] Lee, H.-G.; Lowengrub, J.-S.; Goodman, J. Modeling pinch-off and reconnection in a Hele–Shaw cell. I. The models and their calibration, Phys. Fluids, Volume 14 (2002), pp. 492–512 | MR | Zbl

[26] Lowengrub, J.; Titi, E.; Zhao, K. Analysis of a mixture model of tumor growth, Eur. J. Appl. Math., Volume 24 (2013), pp. 691–734 | DOI | MR | Zbl

[27] Melchionna, S.; Rocca, E. Varifold solutions of a sharp interface limit of a diffuse interface model for tumor growth | arXiv | DOI | Zbl

[28] Miranville, A.; Zelik, S. Robust exponential attractors for Cahn–Hilliard type equations with singular potentials, Math. Methods Appl. Sci., Volume 27 (2004), pp. 545–582 | DOI | MR | Zbl

[29] Miranville, A.; Zelik, S.; Dafermos, C.M.; Pokorny, M. Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of Differential Equations, Evolutionary Partial Differential Equations, vol. 4, Elsevier, Amsterdam, 2008, pp. 103–200 | DOI | MR | Zbl

[30] Rocca, E.; Schimperna, G. Universal attractor for some singular phase transition systems, Physica D, Volume 192 (2004), pp. 279–307 | DOI | MR | Zbl

[31] Rybka, P.; Hoffmann, K.-H. Convergence of solutions to Cahn–Hilliard equation, Commun. Partial Differ. Equ., Volume 24 (1999), pp. 1055–1077 | DOI | MR | Zbl

[32] Simon, L. Asymptotics for a class of nonlinear evolution equation with applications to geometric problems, Ann. Math., Volume 118 (1983), pp. 525–571 | DOI | MR | Zbl

[33] Temam, R. Navier–Stokes Equations: Theory and Numerical Analysis, AMS, Providence, 2001 | MR | Zbl

[34] Wang, X.; Wu, H. Long-time behavior for the Hele–Shaw–Cahn–Hilliard system, Asymptot. Anal., Volume 78 (2012), pp. 217–245 | MR | Zbl

[35] Wang, X.; Zhang, Z. Well-posedness of the Hele–Shaw–Cahn–Hilliard system, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 30 (2013), pp. 367–384 | DOI | Numdam | MR | Zbl

[36] Wise, S.M. Unconditionally stable finite difference, nonlinear multigrid simulations of the Cahn–Hilliard–Hele–Shaw system of equations, J. Sci. Comput., Volume 44 (2010), pp. 38–68 | MR | Zbl

Cité par Sources :