Uniform convergence for the incompressible limit of a tumor growth model
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1321-1354.

We study a model introduced by Perthame and Vauchelet [19] that describes the growth of a tumor governed by Brinkman's Law, which takes into account friction between the tumor cells. We adopt the viscosity solution approach to establish an optimal uniform convergence result of the tumor density as well as the pressure in the incompressible limit. The system lacks standard maximum principle, and thus modification of the usual approach is necessary.

DOI : 10.1016/j.anihpc.2017.11.005
Mots clés : Viscosity solutions, Tumor growth, Front propagation
@article{AIHPC_2018__35_5_1321_0,
     author = {Kim, Inwon and Turanova, Olga},
     title = {Uniform convergence for the incompressible limit of a tumor growth model},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1321--1354},
     publisher = {Elsevier},
     volume = {35},
     number = {5},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.11.005},
     mrnumber = {3813966},
     zbl = {1390.35374},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.005/}
}
TY  - JOUR
AU  - Kim, Inwon
AU  - Turanova, Olga
TI  - Uniform convergence for the incompressible limit of a tumor growth model
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1321
EP  - 1354
VL  - 35
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.005/
DO  - 10.1016/j.anihpc.2017.11.005
LA  - en
ID  - AIHPC_2018__35_5_1321_0
ER  - 
%0 Journal Article
%A Kim, Inwon
%A Turanova, Olga
%T Uniform convergence for the incompressible limit of a tumor growth model
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1321-1354
%V 35
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.005/
%R 10.1016/j.anihpc.2017.11.005
%G en
%F AIHPC_2018__35_5_1321_0
Kim, Inwon; Turanova, Olga. Uniform convergence for the incompressible limit of a tumor growth model. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1321-1354. doi : 10.1016/j.anihpc.2017.11.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.005/

[1] Ambrosio, L. Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227–260 | DOI | MR | Zbl

[2] Barles, G.; Souganidis, P. A new approach to front propagation problems: theory and applications, Arch. Ration. Mech. Anal., Volume 141 (1998), pp. 237–296 | DOI | MR | Zbl

[3] Barles, G.; Soner, H.M.; Souganidis, P.E. Front propagation and phase field theory, SIAM J. Control Optim. (1993), pp. 439–469 | DOI | MR | Zbl

[4] Bourgoing, M. Viscosity solutions of fully nonlinear second order parabolic equations with L1 dependence in time and Neumann boundary conditions, Discrete Contin. Dyn. Syst., Volume 21 (2008) no. 3, pp. 763–800 | DOI | MR | Zbl

[5] Bourgoing, M. Viscosity solutions of fully nonlinear second order parabolic equations with L1 dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach, Discrete Contin. Dyn. Syst., Volume 21 (2008) no. 4, pp. 1047–1069 | DOI | MR | Zbl

[6] Bresch, D.; Colin, T.; Grenier, E.; Ribba, B.; Saut, O. A viscoelastic model for avascular tumor growth, Discrete Contin. Dyn. Syst. Suppl. (2009), pp. 101–108 | MR | Zbl

[7] Crandall, M. (1997), pp. 1–43 Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Montecatini Terme, Italy, June, 12–20, 1995 | MR | Zbl

[8] Crandall, M.; Ishii, H.; Lions, P.-L. Uniqueness of viscosity solutions of Hamilton–Jacobi equations revisited, J. Math. Soc. Jpn., Volume 39 (1987) no. 4, pp. 581–596 | DOI | MR | Zbl

[9] Crandall, M.; Ishii, H.; Lions, P.-L. User's guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc. (N.S.), Volume 27 (1992) no. 1, pp. 1–67 | DOI | MR | Zbl

[10] Crippa, G. The flow associated to weakly differentiable vector fields http://cvgmt.sns.it/paper/655/ (Ph.D. Thesis) | MR | Zbl

[11] DiPerna, R.J.; Lions, P.L. Ordinary differential equations, transport theory, and Sobolev spaces, Invent. Math., Volume 98 (1989), pp. 511–547 | DOI | MR | Zbl

[12] Evans, L.C.; Gariepy, R.F. Measure Theory and Fine Properties of Functions, CRC Press, 1991 | MR | Zbl

[13] Ishii, H. Hamilton–Jacobi equations with discontinuous hamiltonians on arbitrary open sets, Bull. Fac. Sci. Engrg. Chuo Univ., Volume 28 (1985), pp. 33–77 | MR | Zbl

[14] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, 2001 | MR

[15] Kim, I. Singular limits of Chematoxis model, Nonlinear Anal. TMA, Volume 46 (2001), pp. 817–834 | MR | Zbl

[16] I. Kim, N. Pozar, Porous medium equation to Hele–Shaw flow with general initial density, Trans. Am. Math. Soc., . | DOI | MR

[17] Mellet, A.; Perthame, B.; Quiròs, F. A HELE-SHAW problem for tumor growth (preprint) | arXiv | DOI | MR | Zbl

[18] Perthame, B.; Quiròs, F.; Vázquez, J.-L. The Hele–Shaw asymptotics for mechanical models of tumor growth, Arch. Ration. Mech. Anal., Volume 212 (2014), pp. 93–127 | DOI | MR | Zbl

[19] Perthame, B.; Vauchelet, N. Incompressible limit of a mechanical model of tumour growth with viscosity, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., Volume 373 (2015) no. 2050 | DOI | MR | Zbl

[20] Stein, E.M. Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1971 | MR | Zbl

[21] Stromberg, T. On viscosity solutions of the Hamilton–Jacobi equation, Hokkaido Math. J., Volume 28 (1999) no. 3, pp. 475–506 | DOI | MR | Zbl

[22] Souganidis, P.E. Front propagation: theory and applications, Viscosity Solutions and Applications, Lecture Notes in Mathematics, vol. 1660, 1997, pp. 186–242 | DOI | MR | Zbl

[23] Trivisa, K.; Weber, F. A convergent explicit finite difference scheme for a mechanical model for tumor growth, ESAIM, Math. Model. Numer. Anal., Volume 51 (2017) no. 1 | DOI | Numdam | MR | Zbl

[24] Zheng, X.; Wise, S.M.; Cristini, V. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method, Bull. Math. Biol., Volume 69 (2005), pp. 211–259 | MR

Cité par Sources :