Analysis of the adiabatic piston problem via methods of continuum mechanics
Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1377-1408.

We consider a system modelling the motion of a piston in a cylinder filled by a viscous heat conducting gas. The piston is moving longitudinally without friction under the influence of the forces exerted by the gas. In addition, the piston is supposed to be thermally insulating (adiabatic piston). This fact raises several challenges which received a considerable attention, essentially in the statistical physics literature. We study the problem via the methods of continuum mechanics, specifically, the motion of the gas is described by means of the Navier–Stokes–Fourier system in one space dimension, coupled with Newton's second law governing the motion of the piston. We establish global in time existence of strong solutions and show that the system stabilizes to an equilibrium state for t.

DOI : 10.1016/j.anihpc.2017.11.008
Mots clés : Piston problem, Navier–Stokes–Fourier system, Free boundary problem
@article{AIHPC_2018__35_5_1377_0,
     author = {Feireisl, Eduard and M\'acha, V\'aclav and Ne\v{c}asov\'a, \v{S}\'arka and Tucsnak, Marius},
     title = {Analysis of the adiabatic piston problem via methods of continuum mechanics},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1377--1408},
     publisher = {Elsevier},
     volume = {35},
     number = {5},
     year = {2018},
     doi = {10.1016/j.anihpc.2017.11.008},
     mrnumber = {3813968},
     zbl = {1393.35168},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.008/}
}
TY  - JOUR
AU  - Feireisl, Eduard
AU  - Mácha, Václav
AU  - Nečasová, Šárka
AU  - Tucsnak, Marius
TI  - Analysis of the adiabatic piston problem via methods of continuum mechanics
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2018
SP  - 1377
EP  - 1408
VL  - 35
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.008/
DO  - 10.1016/j.anihpc.2017.11.008
LA  - en
ID  - AIHPC_2018__35_5_1377_0
ER  - 
%0 Journal Article
%A Feireisl, Eduard
%A Mácha, Václav
%A Nečasová, Šárka
%A Tucsnak, Marius
%T Analysis of the adiabatic piston problem via methods of continuum mechanics
%J Annales de l'I.H.P. Analyse non linéaire
%D 2018
%P 1377-1408
%V 35
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.008/
%R 10.1016/j.anihpc.2017.11.008
%G en
%F AIHPC_2018__35_5_1377_0
Feireisl, Eduard; Mácha, Václav; Nečasová, Šárka; Tucsnak, Marius. Analysis of the adiabatic piston problem via methods of continuum mechanics. Annales de l'I.H.P. Analyse non linéaire, Tome 35 (2018) no. 5, pp. 1377-1408. doi : 10.1016/j.anihpc.2017.11.008. http://archive.numdam.org/articles/10.1016/j.anihpc.2017.11.008/

[1] Antontsev, S.N.; Kazhikhov, A.V.; Monakhov, V.N. Krajevyje Zadaci Mechaniki Neodnorodnych Zidkostej, Novosibirsk, 1983

[2] Besov, O.V.; Il'in, V.P.; Nikol'skiĭ, S.M. Integralnye Predstavleniya Funktsii i Teoremy Vlozheniya, Fizmatlit “Nauka”, Moscow, 1996

[3] Chen, G.-Q.; Torres, M.; Ziemer, W.P. Gauss–Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws, Commun. Pure Appl. Math., Volume 62 (2009) no. 2, pp. 242–304 | MR | Zbl

[4] Cîndea, N.; Micu, S.; Rovenţa, I.; Tucsnak, M. Particle supported control of a fluid-particle system, J. Math. Pures Appl., Volume 104 (2015), pp. 311–353 | DOI | MR | Zbl

[5] Feireisl, E. Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004 | Zbl

[6] Feireisl, E.; Novotný, A. Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser-Verlag, Basel, 2009 | DOI | MR | Zbl

[7] Feireisl, E.; Novotný, A. Weak-strong uniqueness property for the full Navier–Stokes–Fourier system, Arch. Ration. Mech. Anal., Volume 204 (2012), pp. 683–706 | MR | Zbl

[8] Feireisl, E.; Petzeltová, H. Unconditional stability of stationary flows of compressible heat-conducting fluids driven by large external forces, J. Math. Fluid Mech., Volume 1 (1999), pp. 168–186 | DOI | MR | Zbl

[9] Gruber, C.; Morriss, G.P. A Boltzmann equation approach to the dynamics of the simple piston, J. Stat. Phys., Volume 113 (2003) no. 1–2, pp. 297–333 | MR | Zbl

[10] Gruber, C.; Pache, S.; Lesne, A. Two-time-scale relaxation towards thermal equilibrium of the enigmatic piston, J. Stat. Phys., Volume 112 (2003) no. 5–6, pp. 1177–1206 | MR | Zbl

[11] Gruber, C.; Pache, S.; Lesne, A. On the second law of thermodynamics and the piston problem, J. Stat. Phys., Volume 117 (2004) no. 3–4, pp. 739–772 | MR | Zbl

[12] John, O.; Stará, J. On the regularity of weak solutions to parabolic systems in two spatial dimensions, Commun. Partial Differ. Equ., Volume 23 (1998), pp. 1159–1170 | DOI | MR | Zbl

[13] Kazhikhov, A.V. On the Cauchy problem for the equations of a viscous gas, Sib. Mat. Zh., Volume 23 (1982) no. 1, pp. 60–64 (220) | DOI | MR | Zbl

[14] Kazhikhov, A.V.; Shelukhin, V.V. Unique global solution with respect to time of initial–boundary value problems for one-dimensional equations of a viscous gas, Prikl. Mat. Meh., Volume 41 (1977) no. 2, pp. 282–291 | MR | Zbl

[15] Lieb, E.H. Some problems in statistical mechanics that I would like to see solved, Phys. A, Volume 263 (1999) no. 1–4, pp. 491–499 (STATPHYS 20, Paris, 1998) | MR

[16] Lions, P.-L. Mathematical Topics in Fluid Dynamics, vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998 | MR | Zbl

[17] Liu, T.P. The free piston problem for gas dynamics, J. Differ. Equ., Volume 30 (1978), pp. 175–191 | MR | Zbl

[18] Debayan Maity, Takéo Takahashi, Marius Tucsnak, Analysis of a system modelling the motion of a piston in a viscous gas, preprint hal 01285089, 2016. | MR

[19] Neishtadt, A.I.; Sinai, Y.G. Adiabatic piston as a dynamical system, J. Stat. Phys., Volume 116 (2004) no. 1–4, pp. 815–820 | MR | Zbl

[20] Shelukhin, V.V. The unique solvability of the problem of motion of a piston in a viscous gas, Din. Sploš. Sredy (1977) no. 31, pp. 132–150 | MR

[21] Shelukhin, V.V. Motion with a contact discontinuity in a viscous heat conducting gas, Din. Sploš. Sredy (1982) no. 57, pp. 131–152 | MR | Zbl

[22] Straškraba, I. Asymptotic development of vacuum for 1-dimensional Navier–Stokes equations of compressible flow, Nonlinear World, Volume 3 (1996), pp. 519–533 | MR | Zbl

[23] Vázquez, J.L.; Zuazua, E. Large time behavior for a simplified 1D model of fluid-solid interaction, Commun. Partial Differ. Equ., Volume 28 (2003), pp. 1705–1738 | DOI | MR | Zbl

[24] Wagner, D.H. Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions, J. Differ. Equ., Volume 68 (1987) no. 1, pp. 118–136 | DOI | MR | Zbl

[25] Wright, P. A simple piston problem in one dimension, Nonlinearity, Volume 19 (2006) no. 10, pp. 2365–2389 | DOI | MR | Zbl

[26] Wright, P. The periodic oscillation of an adiabatic piston in two or three dimensions, Commun. Math. Phys., Volume 275 (2007) no. 2, pp. 553–580 | DOI | MR | Zbl

[27] Wright, P. Rigorous Results for the Periodic Oscillation of an Adiabatic Piston, ProQuest LLC, Ann Arbor, MI, 2007 Thesis (Ph.D.)–New York University | MR

[28] Zel'dovich, Y.B.; Raizer, Yu.P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York, 1966

Cité par Sources :