We consider the following parabolic system whose nonlinearity has no gradient structure:
Nous considérons le système parabolique suivant :
- – d'une part, le linearisé autour du profil n'est pas auto-adjoint, même pas pour ;
- – d'autre part, lorsque , cela brise toute symmétrie dans le problème.
Keywords: Blowup solution, Blowup profile, Stability, Semilinear parabolic system
@article{AIHPC_2018__35_6_1577_0, author = {Ghoul, Tej-Eddine and Nguyen, Van Tien and Zaag, Hatem}, title = {Construction and stability of blowup solutions for a non-variational semilinear parabolic system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1577--1630}, publisher = {Elsevier}, volume = {35}, number = {6}, year = {2018}, doi = {10.1016/j.anihpc.2018.01.003}, mrnumber = {3846237}, zbl = {1394.35222}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2018.01.003/} }
TY - JOUR AU - Ghoul, Tej-Eddine AU - Nguyen, Van Tien AU - Zaag, Hatem TI - Construction and stability of blowup solutions for a non-variational semilinear parabolic system JO - Annales de l'I.H.P. Analyse non linéaire PY - 2018 SP - 1577 EP - 1630 VL - 35 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2018.01.003/ DO - 10.1016/j.anihpc.2018.01.003 LA - en ID - AIHPC_2018__35_6_1577_0 ER -
%0 Journal Article %A Ghoul, Tej-Eddine %A Nguyen, Van Tien %A Zaag, Hatem %T Construction and stability of blowup solutions for a non-variational semilinear parabolic system %J Annales de l'I.H.P. Analyse non linéaire %D 2018 %P 1577-1630 %V 35 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2018.01.003/ %R 10.1016/j.anihpc.2018.01.003 %G en %F AIHPC_2018__35_6_1577_0
Ghoul, Tej-Eddine; Nguyen, Van Tien; Zaag, Hatem. Construction and stability of blowup solutions for a non-variational semilinear parabolic system. Annales de l'I.H.P. Analyse non linéaire, Volume 35 (2018) no. 6, pp. 1577-1630. doi : 10.1016/j.anihpc.2018.01.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2018.01.003/
[1] Liouville theorems and blow up behaviour in semilinear reaction diffusion systems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 14 (1997) no. 1, pp. 1–53 | DOI | Numdam | MR | Zbl
[2] A rescaling algorithm for the numerical calculation of blowing-up solutions, Commun. Pure Appl. Math., Volume 41 (1988) no. 6, pp. 841–863 | DOI | MR | Zbl
[3] Universality in blow-up for nonlinear heat equations, Nonlinearity, Volume 7 (1994) no. 2, pp. 539–575 http://stacks.iop.org/0951-7715/7/539 | DOI | MR | Zbl
[4] Blow-up estimates of positive solutions of a parabolic system, J. Differ. Equ., Volume 113 (1994) no. 2, pp. 265–271 | DOI | MR | Zbl
[5] Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension, Commun. Pure Appl. Math., Volume 66 (2013) no. 10, pp. 1541–1581 | DOI | MR | Zbl
[6] Blow-up rates for parabolic systems, Z. Angew. Math. Phys., Volume 47 (1996) no. 1, pp. 132–143 | DOI | MR | Zbl
[7] Construction and stability of a blow up solution for a nonlinear heat equation with a gradient term, SeMA J. (2011) no. 55, pp. 5–21 | MR | Zbl
[8] Boundedness and blow up for a semilinear reaction–diffusion system, J. Differ. Equ., Volume 89 (1991) no. 1, pp. 176–202 | DOI | MR | Zbl
[9] A uniqueness result for a semilinear reaction–diffusion system, Proc. Am. Math. Soc., Volume 112 (1991) no. 1, pp. 175–185 | DOI | MR | Zbl
[10] A semilinear parabolic system in a bounded domain, Ann. Mat. Pura Appl. (4), Volume 165 (1993), pp. 315–336 | DOI | MR | Zbl
[11] Boundedness up to blow-up of the difference between two solutions to a semilinear heat equation, Nonlinearity, Volume 13 (2000) no. 4, pp. 1189–1216 | DOI | MR | Zbl
[12] Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view, Math. Ann., Volume 317 (2000) no. 2, pp. 347–387 | DOI | MR | Zbl
[13] The blow-up rate for semilinear parabolic problems on general domains, NoDEA Nonlinear Differ. Equ. Appl., Volume 8 (2001) no. 4, pp. 473–480 | DOI | MR | Zbl
[14] Refined asymptotics for the blowup of , Commun. Pure Appl. Math., Volume 45 (1992) no. 7, pp. 821–869 | DOI | MR | Zbl
[15] On the blowup of multidimensional semilinear heat equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 10 (1993) no. 3, pp. 313–344 | DOI | Numdam | MR | Zbl
[16] A single point blow-up for solutions of semilinear parabolic systems, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., Volume 34 (1987) no. 1, pp. 65–79 | MR | Zbl
[17] Stability of infinite time blow up for the Patlak Keller Segel system, 2016 | arXiv
[18] Blowup solutions for a nonlinear heat equation involving a critical power nonlinear gradient term, J. Differ. Equ., Volume 263 (2017) no. 8, pp. 4517–4564 | DOI | MR | Zbl
[19] Asymptotically self-similar blow-up of semilinear heat equations, Commun. Pure Appl. Math., Volume 38 (1985) no. 3, pp. 297–319 | DOI | MR | Zbl
[20] Characterizing blowup using similarity variables, Indiana Univ. Math. J., Volume 36 (1987) no. 1, pp. 1–40 | DOI | MR | Zbl
[21] Nondegeneracy of blowup for semilinear heat equations, Commun. Pure Appl. Math., Volume 42 (1989) no. 6, pp. 845–884 | DOI | MR | Zbl
[22] Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J., Volume 53 (2004) no. 2, pp. 483–514 | DOI | MR | Zbl
[23] Generic behaviour of one-dimensional blow up patterns, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 19 (1992) no. 3, pp. 381–450 | Numdam | MR | Zbl
[24] Flat blow-up in one-dimensional semilinear heat equations, Differ. Integral Equ., Volume 5 (1992) no. 5, pp. 973–997 | MR | Zbl
[25] Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 10 (1993) no. 2, pp. 131–189 | DOI | Numdam | MR | Zbl
[26] Improved conditions for single-point blow-up in reaction–diffusion systems, J. Differ. Equ., Volume 259 (2015) no. 5, pp. 1898–1932 | DOI | MR | Zbl
[27] Blow-up profile for the complex Ginzburg–Landau equation, J. Funct. Anal., Volume 255 (2008) no. 7, pp. 1613–1666 | DOI | MR | Zbl
[28] Solution of a nonlinear heat equation with arbitrarily given blow-up points, Commun. Pure Appl. Math., Volume 45 (1992) no. 3, pp. 263–300 | DOI | MR | Zbl
[29] Stability of the blow-up profile for equations of the type , Duke Math. J., Volume 86 (1997) no. 1, pp. 143–195 | DOI | MR | Zbl
[30] Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 5–6, pp. 279–283 | DOI | MR | Zbl
[31] Construction of a stable blow-up solution for a class of strongly perturbed semilinear heat equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 16 (2016) no. 4, pp. 1275–1314 | DOI | MR | Zbl
[32] Finite degrees of freedom for the refined blow-up profile for a semilinear heat equation, Ann. Sci. Éc. Norm. Supér., Volume 50 (2017) no. 4, pp. 1241–1282 http://smf4.emath.fr/Publications/AnnalesENS/4_50/html/ens_ann-sc_50_1241-1282.php | MR | Zbl
[33] Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation, Commun. Partial Differ. Equ., Volume 40 (2015) no. 7, pp. 1197–1217 | DOI | MR | Zbl
[34] Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang–Mills problems, Publ. Math. Inst. Hautes Études Sci. (2012), pp. 1–122 | DOI | Numdam | MR | Zbl
[35] On the stability of critical chemotactic aggregation, Math. Ann., Volume 359 (2014) no. 1–2, pp. 267–377 | DOI | MR | Zbl
[36] Type II blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal., Volume 263 (2012) no. 12, pp. 3922–3983 | DOI | MR | Zbl
[37] Single-point blow-up for a semilinear parabolic system, J. Eur. Math. Soc., Volume 11 (2009) no. 1, pp. 169–188 | DOI | MR | Zbl
[38] Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term, 2015 | arXiv | Zbl
[39] Higher-dimensional blow up for semilinear parabolic equations, Commun. Partial Differ. Equ., Volume 17 (1992) no. 9–10, pp. 1567–1596 | DOI | MR | Zbl
[40] Estimates on the -dimensional Hausdorff measure of the blow-up set for a semilinear heat equation, Indiana Univ. Math. J., Volume 42 (1993) no. 2, pp. 445–476 | DOI | MR | Zbl
[41] Classification of singularities for blowing up solutions in higher dimensions, Trans. Am. Math. Soc., Volume 338 (1993) no. 1, pp. 441–464 | DOI | MR | Zbl
[42] Blow-up results for vector-valued nonlinear heat equations with no gradient structure, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 15 (1998) no. 5, pp. 581–622 | DOI | Numdam | MR | Zbl
[43] A Liouville theorem and blowup behavior for a vector-valued nonlinear heat equation with no gradient structure, Commun. Pure Appl. Math., Volume 54 (2001) no. 1, pp. 107–133 | DOI | MR | Zbl
Cited by Sources: