@article{ASNSP_1992_4_19_3_381_0, author = {Herrero, M. A. and Vel\'azquez, J. J. L.}, title = {Generic behaviour of one-dimensional blow up patterns}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {381--450}, publisher = {Scuola normale superiore}, volume = {Ser. 4, 19}, number = {3}, year = {1992}, mrnumber = {1205406}, zbl = {0798.35081}, language = {en}, url = {http://archive.numdam.org/item/ASNSP_1992_4_19_3_381_0/} }
TY - JOUR AU - Herrero, M. A. AU - Velázquez, J. J. L. TI - Generic behaviour of one-dimensional blow up patterns JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 1992 SP - 381 EP - 450 VL - 19 IS - 3 PB - Scuola normale superiore UR - http://archive.numdam.org/item/ASNSP_1992_4_19_3_381_0/ LA - en ID - ASNSP_1992_4_19_3_381_0 ER -
%0 Journal Article %A Herrero, M. A. %A Velázquez, J. J. L. %T Generic behaviour of one-dimensional blow up patterns %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 1992 %P 381-450 %V 19 %N 3 %I Scuola normale superiore %U http://archive.numdam.org/item/ASNSP_1992_4_19_3_381_0/ %G en %F ASNSP_1992_4_19_3_381_0
Herrero, M. A.; Velázquez, J. J. L. Generic behaviour of one-dimensional blow up patterns. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Tome 19 (1992) no. 3, pp. 381-450. http://archive.numdam.org/item/ASNSP_1992_4_19_3_381_0/
[B1] On the asymptotic shape of blow up, Indiana Univ. Math. J., 39, 4 (1990), 947-960. | MR | Zbl
,[B2] Stable blow up patterns, J. Differential Equations, 98 (1992), 57-75. | MR | Zbl
,[BE] Mathematical problems from combustion theory, Appl. Math. Sci. 83, Springer (1989). | MR | Zbl
- ,[CM] Convergence, asymptotic periodicity and finite point blow up in one-dimensional semilinear heat equations, J. Differential Equations, 78 (1989), 160-190. | MR | Zbl
- ,[D] Analysis of the early stage of thermal runaway, Quart. J. Mech. Appl. Math. 38 (1985), 361-387. | Zbl
,[F] Partial Differential Equations of parabolic type, Robert E. Krieger Co (1983).
,[FK] Refined asymptotics for the blow up of u t - Δu = up, Comm. Pure. Appl. Math., XLV (1992), 821-869. | Zbl
- ,[FM] Blow up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447. | MR | Zbl
- ,[Fu] On the blowing up of solutions of the Cauchy problem for ut = Δu+u1+α, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. | Zbl
,[GHV] The space structure near a blow up point for semilinear heat equations, Soviet J. Comput. Math. and Math. Physics, 31 (1991), 399-411. | MR | Zbl
- - ,[GK1] Asymptotically self-similar blow up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319. | MR | Zbl
- ,[GK2] Characterizing blow up using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40. | MR | Zbl
- ,[GK3] Nondegeneracy of blow up for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884. | MR | Zbl
- ,[GP] Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations, Differential Equations, 22, 7 (1986), 116-1183. | MR | Zbl
- ,[HV1] Blow up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré, to appear. | Numdam | MR | Zbl
- ,[HV2] Flat blow up in one-dimensional semilinear heat equations, Differential Integral Equations, Vol. 5, n° 5 (1992), 973-997. | MR | Zbl
- ,[HV3] Blow up profiles in one-dimensional, semilinear parabolic problems, Comm. Partial Differential Equations, 17, 182, (1992), 205-219. | MR | Zbl
- ,[HV4] Plane structures in thermal runaway, Israel J. Math., to appear. | MR | Zbl
- ,[HSS] A nonlinear instability burst in plane parallel flow, J. Fluid Mech. J1 (1972), 705-735. | Zbl
- - ,[LM] Sur l'unicité retrograde, Math. Scand. 8 (1960), 277-286. | MR | Zbl
- ,[M] Solution of a nonlinear heat equation with arbitrarily given blow up points, Comm. Pure. Appl. Math., to appear. | MR | Zbl
,[MW] Single point blow up for a general semilinear heat equation, Indiana Univ. Math. J., 34 (1983), 881-913. | MR | Zbl
- ,[V] Local behaviour near blow up points for semilinear parabolic equations, J. Differential Equations, to appear. | MR | Zbl
,[W] Single point blow up of semilinear initial value problems, J. Differential Equations, 55 (1984), 204-224. | MR | Zbl
,