Regularity theory for the Isaacs equation through approximation methods
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 53-74.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper, we propose an approximation method to study the regularity of solutions to the Isaacs equation. This class of problems plays a paramount role in the regularity theory for fully nonlinear elliptic equations. First, it is a model-problem of a non-convex operator. In addition, the usual mechanisms to access regularity of solutions fall short in addressing these equations. We approximate an Isaacs equation by a Bellman one, and make assumptions on the latter to recover information for the former. Our techniques produce results in Sobolev and Hölder spaces; we also examine a few consequences of our main findings.

DOI : 10.1016/j.anihpc.2018.03.010
Classification : 35B65, 35J60, 35Q91
Mots-clés : Isaacs equations, Regularity theory, Estimates in Sobolev and Hölder spaces, Approximation methods
@article{AIHPC_2019__36_1_53_0,
     author = {Pimentel, Edgard A.},
     title = {Regularity theory for the {Isaacs} equation through approximation methods},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {53--74},
     publisher = {Elsevier},
     volume = {36},
     number = {1},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.03.010},
     mrnumber = {3906865},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2018.03.010/}
}
TY  - JOUR
AU  - Pimentel, Edgard A.
TI  - Regularity theory for the Isaacs equation through approximation methods
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 53
EP  - 74
VL  - 36
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2018.03.010/
DO  - 10.1016/j.anihpc.2018.03.010
LA  - en
ID  - AIHPC_2019__36_1_53_0
ER  - 
%0 Journal Article
%A Pimentel, Edgard A.
%T Regularity theory for the Isaacs equation through approximation methods
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 53-74
%V 36
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2018.03.010/
%R 10.1016/j.anihpc.2018.03.010
%G en
%F AIHPC_2019__36_1_53_0
Pimentel, Edgard A. Regularity theory for the Isaacs equation through approximation methods. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 1, pp. 53-74. doi : 10.1016/j.anihpc.2018.03.010. http://archive.numdam.org/articles/10.1016/j.anihpc.2018.03.010/

[1] Armstrong, S.; Silvestre, L.; Smart, C. Partial regularity of solutions of fully nonlinear, uniformly elliptic equations, Commun. Pure Appl. Math., Volume 65 (2012) no. 8, pp. 1169–1184 | DOI | MR | Zbl

[2] Buckdahn, R.; Cardaliaguet, P.; Quincampoix, M. Some recent aspects of differential game theory, Dyn. Games Appl., Volume 1 (2011) no. 1, pp. 74–114 | DOI | MR | Zbl

[3] Buckdahn, R.; Li, J. Stochastic differential games and viscosity solutions of Hamilton–Jacobi–Bellman–Isaacs equations, SIAM J. Control Optim., Volume 47 (2008) no. 1, pp. 444–475 | DOI | MR | Zbl

[4] Buckdahn, R.; Li, J.; Quincampoix, M. Value function of differential games without Isaacs conditions. An approach with nonanticipative mixed strategies, Int. J. Game Theory, Volume 42 (2013) no. 4, pp. 989–1020 | DOI | MR | Zbl

[5] Cabré, X.; Caffarelli, L. Interior C2,α regularity theory for a class of nonconvex fully nonlinear elliptic equations, J. Math. Pures Appl. (9), Volume 82 (2003) no. 5, pp. 573–612 | DOI | MR | Zbl

[6] Caffarelli, L. Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2), Volume 130 (1989) no. 1, pp. 189–213 | DOI | MR | Zbl

[7] Caffarelli, L.; Cabré, X. Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995 | DOI | MR | Zbl

[8] Caffarelli, L.; Crandall, M.; Kocan, M.; Święch, A. On viscosity solutions of fully nonlinear equations with measurable ingredients, Commun. Pure Appl. Math., Volume 49 (1996) no. 4, pp. 365–397 | DOI | MR | Zbl

[9] Caffarelli, L.; Silvestre, L. Smooth approximations of solutions to nonconvex fully nonlinear elliptic equations, Nonlinear Partial Differential Equations and Related Topics, Amer. Math. Soc. Transl. Ser. 2, vol. 229, Amer. Math. Soc., Providence, RI, 2010, pp. 67–85 | MR | Zbl

[10] Caffarelli, L.A.; Yuan, Y. A priori estimates for solutions of fully nonlinear equations with convex level set, Indiana Univ. Math. J., Volume 49 (2000) no. 2, pp. 681–695 | DOI | MR | Zbl

[11] Collins, T. C2,α estimates for nonlinear elliptic equations of twisted type, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 1 (11) | DOI | MR

[12] Crandall, M.; Evans, L.; Lions, P.-L. Some properties of viscosity solutions of Hamilton–Jacobi equations, Trans. Am. Math. Soc., Volume 282 (1984) no. 2, pp. 487–502 | DOI | MR | Zbl

[13] Crandall, M.; Kocan, M.; Soravia, P.; Święch, A. Progress in Elliptic and Parabolic Partial Differential Equations, Pitman Res. Notes Math. Ser., Volume vol. 350, Longman, Harlow (1996), pp. 136–162 (Capri, 1994) | MR | Zbl

[14] Crandall, M.; Lions, P.-L. Viscosity solutions of Hamilton–Jacobi equations, Trans. Am. Math. Soc., Volume 277 (1983) no. 1, pp. 1–42 | DOI | MR | Zbl

[15] Evans, L.; Souganidis, P. Differential games and representation formulas for solutions of Hamilton–Jacobi–Isaacs equations, Indiana Univ. Math. J., Volume 33 (1984) no. 5, pp. 773–797 | DOI | MR | Zbl

[16] Fleming, W.; Souganidis, P. On the existence of value functions of two-player, zero-sum stochastic differential games, Indiana Univ. Math. J., Volume 38 (1989) no. 2, pp. 293–314 | DOI | MR | Zbl

[17] Friedman, A. Differential Games, Pure and Applied Mathematics, vol. XXV, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York–London, 1971 | MR | Zbl

[18] Isaacs, R. Differential Games. A mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization, John Wiley & Sons, Inc., New York–London–Sydney, 1965 | MR | Zbl

[19] Katsoulakis, M. A representation formula and regularizing properties for viscosity solutions of second-order fully nonlinear degenerate parabolic equations, Nonlinear Anal., Volume 24 (1995) no. 2, pp. 147–158 | DOI | MR | Zbl

[20] Kovats, J. The minmax principle and W2,p regularity for solutions of the simplest Isaacs equations, Proc. Am. Math. Soc., Volume 140 (2012) no. 8, pp. 2803–2815 | DOI | MR | Zbl

[21] Kovats, J. On the second order derivatives of solutions of a special Isaacs equation, Proc. Am. Math. Soc., Volume 144 (2016) no. 4, pp. 1523–1533 | DOI | MR

[22] Krylov, N. To the theory of viscosity solutions for uniformly elliptic Isaacs equations, J. Funct. Anal., Volume 267 (2014) no. 11, pp. 4321–4340 | DOI | MR | Zbl

[23] Krylov, N.; Safonov, M. An estimate for the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR, Volume 245 (1979) no. 1, pp. 18–20 | MR

[24] Krylov, N.; Safonov, M. A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 44 (1980) no. 1, pp. 161–175 | MR | Zbl

[25] Li, D.; Zhang, K. W2,p interior estimates of fully nonlinear elliptic equations, Bull. Lond. Math. Soc., Volume 47 (2015) no. 2, pp. 301–314 | MR

[26] Lin, F. Second derivative Lp-estimates for elliptic equations of nondivergent type, Proc. Am. Math. Soc., Volume 96 (1986) no. 3, pp. 447–451 | MR | Zbl

[27] Lions, P.-L. Generalized Solutions of Hamilton–Jacobi Equations, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.–London, 1982 | MR | Zbl

[28] Nadirashvili, N.; Vlăduţ, S. Singular solutions of Hessian fully nonlinear elliptic equations, Adv. Math., Volume 228 (2011) no. 3, pp. 1718–1741 | DOI | MR | Zbl

[29] Pimentel, E.; Teixeira, E. Sharp Hessian integrability estimates for nonlinear elliptic equations: an asymptotic approach, J. Math. Pures Appl., Volume 106 (2016) no. 4, pp. 744–767 | DOI | MR

[30] Silvestre, L.; Sirakov, B. Boundary regularity for viscosity solutions of fully nonlinear elliptic equations, Commun. Partial Differ. Equ., Volume 39 (2014) no. 9, pp. 1694–1717 | DOI | MR | Zbl

[31] Silvestre, L.; Teixeira, E. Regularity estimates for fully non linear elliptic equations which are asymptotically convex, Contributions to Nonlinear Elliptic Equations and Systems, Springer, 2015, pp. 425–438 | DOI | MR

[32] Święch, A. Another approach to the existence of value functions of stochastic differential games, J. Math. Anal. Appl., Volume 204 (1996) no. 3, pp. 884–897 | DOI | MR | Zbl

[33] Święch, A. W1,p-interior estimates for solutions of fully nonlinear, uniformly elliptic equations, Adv. Differ. Equ., Volume 2 (1997) no. 6, pp. 1005–1027 | MR | Zbl

[34] Teixeira, E. Universal moduli of continuity for solutions to fully nonlinear elliptic equations, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 3, pp. 911–927 | DOI | MR | Zbl

[35] Yeung, D.; Petrosyan, L. Cooperative Stochastic Differential Games, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006 | MR | Zbl

Cité par Sources :