We consider in this paper the regularity problem for time-optimal trajectories of a single-input control-affine system on a n-dimensional manifold. We prove that, under generic conditions on the drift and the controlled vector field, any control u associated with an optimal trajectory is smooth out of a countable set of times. More precisely, there exists an integer K, only depending on the dimension n, such that the non-smoothness set of u is made of isolated points, accumulations of isolated points, and so on up to K-th order iterated accumulations.
@article{AIHPC_2019__36_2_327_0, author = {Boarotto, Francesco and Sigalotti, Mario}, title = {Time-optimal trajectories of generic control-affine systems have at worst iterated {Fuller} singularities}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {327--346}, publisher = {Elsevier}, volume = {36}, number = {2}, year = {2019}, doi = {10.1016/j.anihpc.2018.05.005}, mrnumber = {3913188}, zbl = {1409.49033}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.005/} }
TY - JOUR AU - Boarotto, Francesco AU - Sigalotti, Mario TI - Time-optimal trajectories of generic control-affine systems have at worst iterated Fuller singularities JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 327 EP - 346 VL - 36 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.005/ DO - 10.1016/j.anihpc.2018.05.005 LA - en ID - AIHPC_2019__36_2_327_0 ER -
%0 Journal Article %A Boarotto, Francesco %A Sigalotti, Mario %T Time-optimal trajectories of generic control-affine systems have at worst iterated Fuller singularities %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 327-346 %V 36 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.005/ %R 10.1016/j.anihpc.2018.05.005 %G en %F AIHPC_2019__36_2_327_0
Boarotto, Francesco; Sigalotti, Mario. Time-optimal trajectories of generic control-affine systems have at worst iterated Fuller singularities. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 327-346. doi : 10.1016/j.anihpc.2018.05.005. http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.005/
[1] Transversal Mappings and Flows. An Appendix by Al Kelley, W. A. Benjamin, Inc., New York–Amsterdam, 1967 | MR | Zbl
[2] On regularity properties of extremal controls, J. Dyn. Control Syst., Volume 1 (1995) no. 3, pp. 319–324 | DOI | MR | Zbl
[3] Some open problems, Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Ser., vol. 5, Springer, Cham, 2014, pp. 1–13 | DOI | MR | Zbl
[4] Symplectic geometry for optimal control, Nonlinear Controllability and Optimal Control, vol. 133, 1990, pp. 263–277 | MR | Zbl
[5] Symplectic geometry for optimal control, Nonlinear Controllability and Optimal Control, Monogr. Textbooks Pure Appl. Math., vol. 133, Dekker, New York, 1990, pp. 263–277 | MR | Zbl
[6] Control theory from the geometric viewpoint, Control Theory and Optimization, II, Encyclopaedia of Mathematical Sciences, vol. 87, Springer-Verlag, Berlin, 2004 | MR | Zbl
[7] On the local structure of optimal trajectories in , SIAM J. Control Optim., Volume 42 (2003) no. 2, pp. 513–531 | DOI | MR | Zbl
[8] Generic properties of singular trajectories, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 14 (1997) no. 2, pp. 167–186 | DOI | Numdam | MR | Zbl
[9] Optimal Syntheses for Control Systems on 2-D Manifolds, Mathématiques & Applications, Mathematics & Applications, vol. 43, Springer-Verlag, Berlin, 2004 | MR | Zbl
[10] The generic local time-optimal stabilizing controls in dimension 3, SIAM J. Control Optim., Volume 24 (1986) no. 2, pp. 177–190 | DOI | MR | Zbl
[11] Regularization of chattering phenomena via bounded variation control, IEEE Trans. Autom. Control (2018) (in press) | DOI | MR | Zbl
[12] Singular trajectories of control-affine systems, SIAM J. Control Optim., Volume 47 (2008) no. 2, pp. 1078–1095 | DOI | MR | Zbl
[13] Study of an optimum nonlinear system, J. Electron. Control, Volume 15 (1963), pp. 63–71 | DOI | MR
[14] Stratified Morse Theory, vol. 14, Springer Science & Business Media, 2012
[15] The structure of small time reachable sets in low dimension, SIAM J. Control Optim., Volume 27 (1989), pp. 120–147 | DOI | MR | Zbl
[16] The ubiquity of Fuller's phenomenon, Nonlinear controllability and optimal control, Volume 133 (1990), pp. 313–350 | MR | Zbl
[17] Contrôlabilité des systèmes non linéaires, SIAM J. Control Optim., Volume 8 (1970) no. 4, pp. 573 | MR | Zbl
[18] Chattering arcs and chattering controls, J. Optim. Theory Appl., Volume 11 (1973), pp. 441–468 | DOI | MR | Zbl
[19] Regular time-optimal syntheses for smooth planar systems, Rend. Semin. Mat. Univ. Padova, Volume 95 (1996), pp. 59–79 | Numdam | MR | Zbl
[20] Regular synthesis and sufficiency conditions for optimality, SIAM J. Control Optim., Volume 39 (2000) no. 2, pp. 359–410 | DOI | MR | Zbl
[21] The Mathematical Theory of Optimal Processes, Interscience Publishers John Wiley & Sons, Inc., New York–London, 1962 (translated from the Russian by K.N. Trirogoff, edited by L.W. Neustadt) | MR | Zbl
[22] The local structure of time-optimal trajectories in dimension three under generic conditions, SIAM J. Control Optim., Volume 26 (1988) no. 4, pp. 899–918 | DOI | MR | Zbl
[23] On the local structure of time-optimal bang–bang trajectories in , SIAM J. Control Optim., Volume 26 (1988) no. 1, pp. 186–204 | DOI | MR | Zbl
[24] Regularity properties of optimal trajectories of control systems with one input in dimension three, Sovrem. Mat. Prilozh., Volume 9 (2003), pp. 68–80 | MR | Zbl
[25] Local regularity of optimal trajectories for control problems with general boundary conditions, J. Dyn. Control Syst., Volume 11 (2005), pp. 91–123 | DOI | MR | Zbl
[26] Time-optimal control in the plane, Feedback Control of Linear and Nonlinear Systems, 1982, pp. 244–260 | DOI | MR | Zbl
[27] The structure of time-optimal trajectories for single-input systems in the plane: the nonsingular case, SIAM J. Control Optim., Volume 25 (1987) no. 2, pp. 433–465 | DOI | MR
[28] Synthesis, presynthesis, sufficient conditions for optimality and subanalytic sets, Nonlinear Controllability and Optimal Control, Marcel Dekker, New York, 1990, pp. 1–20 | MR | Zbl
[29] A weak regularity theorem for real analytic optimal control problems, Rev. Mat. Iberoam., Volume 2 (1986) no. 3, pp. 307–317 | DOI | MR | Zbl
[30] Envelopes, conjugate points, and optimal bang–bang extremals, Algebraic and Geometric Methods in Nonlinear Control Theory, Math. Appl., vol. 29, Reidel, Dordrecht, 1986, pp. 325–346 | MR | Zbl
[31] Theory of Chattering Control: with Applications to Astronautics, Robotics, Economics, and Engineering, Springer Science & Business Media, 2012
[32] Geometry of neighborhoods of singular trajectories in problems with multidimensional control, Proc. Steklov Inst. Math., Volume 277 (2012) no. 1, pp. 67–83 | DOI | MR | Zbl
Cité par Sources :