Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 365-387.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

For a sequence of coupled fields {(ϕn,ψn)} from a compact Riemann surface M with smooth boundary to a general compact Riemannian manifold with uniformly bounded energy and satisfying the Dirac-harmonic system up to some uniformly controlled error terms, we show that the energy identity holds during a blow-up process near the boundary. As an application to the heat flow of Dirac-harmonic maps from surfaces with boundary, when such a flow blows up at infinite time, we obtain an energy identity.

DOI : 10.1016/j.anihpc.2018.05.006
Classification : 53C43, 58E20
Mots-clés : Dirac-harmonic maps, Approximate Dirac-harmonic maps, Dirac-harmonic map flow, Energy identity, Boundary blow-up
@article{AIHPC_2019__36_2_365_0,
     author = {Jost, J\"urgen and Liu, Lei and Zhu, Miaomiao},
     title = {Energy identity for a class of approximate {Dirac-harmonic} maps from surfaces with boundary},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {365--387},
     publisher = {Elsevier},
     volume = {36},
     number = {2},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.05.006},
     mrnumber = {3913190},
     zbl = {1416.53060},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.006/}
}
TY  - JOUR
AU  - Jost, Jürgen
AU  - Liu, Lei
AU  - Zhu, Miaomiao
TI  - Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 365
EP  - 387
VL  - 36
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.006/
DO  - 10.1016/j.anihpc.2018.05.006
LA  - en
ID  - AIHPC_2019__36_2_365_0
ER  - 
%0 Journal Article
%A Jost, Jürgen
%A Liu, Lei
%A Zhu, Miaomiao
%T Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 365-387
%V 36
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.006/
%R 10.1016/j.anihpc.2018.05.006
%G en
%F AIHPC_2019__36_2_365_0
Jost, Jürgen; Liu, Lei; Zhu, Miaomiao. Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 365-387. doi : 10.1016/j.anihpc.2018.05.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.006/

[1] Bourguignon, J.; Hijazi, O.; Milhorat, J.; Moroianu, A.; Moroianu, S. A Spinorial Approach to Riemannian and Conformal Geometry, European Mathematical Society (EMS), Zürich, 2015 (ix+452 pp) | DOI | MR | Zbl

[2] Chen, J.; Li, Y. Homotopy classes of harmonic maps of the stratified 2-spheres and applications to geometric flows, Adv. Math., Volume 263 (2014), pp. 357–388 | DOI | MR | Zbl

[3] Chen, Q.; Jost, J.; Li, J.; Wang, G. Regularity theorems and energy identities for Dirac-harmonic maps, Math. Z., Volume 251 (2005) no. 1, pp. 61–84 | DOI | MR | Zbl

[4] Chen, Q.; Jost, J.; Li, J.; Wang, G. Dirac-harmonic maps, Math. Z., Volume 254 (2006) no. 2, pp. 409–432 | DOI | MR | Zbl

[5] Chen, Q.; Jost, J.; Sun, L.; Zhu, M. Estimates for solutions of Dirac equations and an application to a geometric elliptic-parabolic problem, J. Eur. Math. Soc. (2017) (in press) | arXiv | MR | Zbl

[6] Chen, Q.; Jost, J.; Wang, G.; Zhu, M. The boundary value problem for Dirac-harmonic maps, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 997–1031 | MR | Zbl

[7] Deligne, P. Quantum Fields and Strings: A Course for Mathematicians, vol. 2, Amer. Mathematical Society, 1999

[8] Ding, W.; Tian, G. Energy identity for a class of approximate harmonic maps from surfaces, Commun. Anal. Geom., Volume 3 (1995) no. 3–4, pp. 543–554 | MR | Zbl

[9] Friedrich, T. Dirac Operators in Riemannian Geometry, American Mathematical Society, Providence, RI, 2000 (xvi+195 pp) | DOI | MR | Zbl

[10] Huang, T.; Wang, C. Boundary bubbling analysis of approximate harmonic maps under either weak or strong anchoring conditions in dimension two | arXiv | Zbl

[11] Jost, J. Two-Dimensional Geometric Variational Problems, Wiley, New York, 1991 | MR | Zbl

[12] Jost, J. Geometry and Physics, Springer, 2009 | DOI | MR | Zbl

[13] J. Jost, L. Liu, M. Zhu, Geometric analysis of the action functional of the nonlinear supersymmetric sigma model, MPI MIS Preprint: 77/2015.

[14] Jost, J.; Liu, L.; Zhu, M. A global weak solution of the Dirac-harmonic map flow, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 34 (2017) no. 7, pp. 1851–1882 | Numdam | MR | Zbl

[15] J. Jost, L. Liu, M. Zhu, The qualitative behavior at the free boundary for approximate harmonic maps from surfaces, MPI MIS Preprint: 26/2016. | MR

[16] Jost, J.; Liu, L.; Zhu, M. Bubbling analysis near the Dirichlet boundary for approximate harmonic maps from surfaces, Commun. Anal. Geom. (2017) (MPI MIS Preprint: 38/2016 in press) | MR | Zbl

[17] Jost, J.; Liu, L.; Zhu, M. Blow-up analysis for approximate Dirac-harmonic maps in dimension 2 with applications to Dirac-harmonic heat flow, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4 (26 pp) | DOI | MR | Zbl

[18] Lawson, H.; Michelsohn, M. Spin Geometry, vol. 38, Princeton University Press, 1989 | MR | Zbl

[19] Li, J.; Zhu, X. Energy identity for the maps from a surface with tension field bounded in Lp , Pac. J. Math., Volume 260 (2012) no. 1, pp. 181–195 | MR | Zbl

[20] Li, Y.; Wang, Y. A weak energy identity and the length of necks for a sequence of Sacks–Uhlenbeck α -harmonic maps, Adv. Math., Volume 225 (2010) no. 3, pp. 1134–1184 | MR | Zbl

[21] Lin, F.; Wang, C. Energy identity of harmonic map flow from surfaces at finite singular time, Calc. Var. Partial Differ. Equ., Volume 6 (1998), pp. 369–380 | MR | Zbl

[22] Lin, F.; Wang, C. Harmonic and quasi-harmonic spheres. II, Commun. Anal. Geom., Volume 10 (2002) no. 2, pp. 341–375 | MR | Zbl

[23] Liu, L. No neck for Dirac-harmonic maps, Calc. Var. Partial Differ. Equ., Volume 52 (2015) no. 1–2, pp. 1–15 | MR | Zbl

[24] Parker, T. Bubble tree convergence for harmonic maps, J. Differ. Geom., Volume 44 (1996) no. 3, pp. 595–633 | DOI | MR | Zbl

[25] Qing, J. On singularities of the heat flow for harmonic maps from surfaces into spheres, Commun. Anal. Geom., Volume 3 (1995), pp. 297–315 | DOI | MR | Zbl

[26] Qing, J.; Tian, G. Bubbling of the heat flows for harmonic maps from surfaces, Commun. Pure Appl. Math., Volume 50 (1997) no. 4, pp. 295–310 | DOI | MR | Zbl

[27] Sacks, J.; Uhlenbeck, K. The existence of minimal immersions of 2-spheres, Ann. Math., Volume 113 (1981), pp. 1–24 | DOI | MR | Zbl

[28] Sharp, B.; Zhu, M. Regularity at the free boundary for Dirac-harmonic maps from surfaces, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 2 | DOI | MR | Zbl

[29] Wang, C. Remarks on approximate harmonic maps in dimension two, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 2 (24 pp) | DOI | MR | Zbl

[30] Wang, W.; Wei, D.; Zhang, Z. Energy identity for approximate harmonic maps from surface to general targets, J. Funct. Anal., Volume 272 (2017) no. 2, pp. 776–803 | DOI | MR | Zbl

[31] Ye, R. Gromov's compactness theorem for pseudo-holomorphic curves, Trans. Am. Math. Soc., Volume 342 (1994) no. 2, pp. 671–694 | MR | Zbl

[32] Zhao, L. Energy identities for Dirac-harmonic maps, Calc. Var. Partial Differ. Equ., Volume 28 (2007) no. 1, pp. 121–138 | DOI | MR | Zbl

[33] Zhu, M. Dirac-harmonic maps from degenerating spin surfaces I: the Neveu–Schwarz case, Calc. Var. Partial Differ. Equ., Volume 35 (2009) no. 2, pp. 169–189 | MR | Zbl

[34] Zhu, M. Regularity of weakly Dirac-harmonic maps to hypersurfaces, Ann. Glob. Anal. Geom., Volume 35 (2009) no. 4, pp. 405–412 | MR | Zbl

Cité par Sources :