For a sequence of coupled fields from a compact Riemann surface M with smooth boundary to a general compact Riemannian manifold with uniformly bounded energy and satisfying the Dirac-harmonic system up to some uniformly controlled error terms, we show that the energy identity holds during a blow-up process near the boundary. As an application to the heat flow of Dirac-harmonic maps from surfaces with boundary, when such a flow blows up at infinite time, we obtain an energy identity.
Mots-clés : Dirac-harmonic maps, Approximate Dirac-harmonic maps, Dirac-harmonic map flow, Energy identity, Boundary blow-up
@article{AIHPC_2019__36_2_365_0, author = {Jost, J\"urgen and Liu, Lei and Zhu, Miaomiao}, title = {Energy identity for a class of approximate {Dirac-harmonic} maps from surfaces with boundary}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {365--387}, publisher = {Elsevier}, volume = {36}, number = {2}, year = {2019}, doi = {10.1016/j.anihpc.2018.05.006}, mrnumber = {3913190}, zbl = {1416.53060}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.006/} }
TY - JOUR AU - Jost, Jürgen AU - Liu, Lei AU - Zhu, Miaomiao TI - Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 365 EP - 387 VL - 36 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.006/ DO - 10.1016/j.anihpc.2018.05.006 LA - en ID - AIHPC_2019__36_2_365_0 ER -
%0 Journal Article %A Jost, Jürgen %A Liu, Lei %A Zhu, Miaomiao %T Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 365-387 %V 36 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.006/ %R 10.1016/j.anihpc.2018.05.006 %G en %F AIHPC_2019__36_2_365_0
Jost, Jürgen; Liu, Lei; Zhu, Miaomiao. Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 365-387. doi : 10.1016/j.anihpc.2018.05.006. http://archive.numdam.org/articles/10.1016/j.anihpc.2018.05.006/
[1] A Spinorial Approach to Riemannian and Conformal Geometry, European Mathematical Society (EMS), Zürich, 2015 (ix+452 pp) | DOI | MR | Zbl
[2] Homotopy classes of harmonic maps of the stratified 2-spheres and applications to geometric flows, Adv. Math., Volume 263 (2014), pp. 357–388 | DOI | MR | Zbl
[3] Regularity theorems and energy identities for Dirac-harmonic maps, Math. Z., Volume 251 (2005) no. 1, pp. 61–84 | DOI | MR | Zbl
[4] Dirac-harmonic maps, Math. Z., Volume 254 (2006) no. 2, pp. 409–432 | DOI | MR | Zbl
[5] Estimates for solutions of Dirac equations and an application to a geometric elliptic-parabolic problem, J. Eur. Math. Soc. (2017) (in press) | arXiv | MR | Zbl
[6] The boundary value problem for Dirac-harmonic maps, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 997–1031 | MR | Zbl
[7] Quantum Fields and Strings: A Course for Mathematicians, vol. 2, Amer. Mathematical Society, 1999
[8] Energy identity for a class of approximate harmonic maps from surfaces, Commun. Anal. Geom., Volume 3 (1995) no. 3–4, pp. 543–554 | MR | Zbl
[9] Dirac Operators in Riemannian Geometry, American Mathematical Society, Providence, RI, 2000 (xvi+195 pp) | DOI | MR | Zbl
[10] Boundary bubbling analysis of approximate harmonic maps under either weak or strong anchoring conditions in dimension two | arXiv | Zbl
[11] Two-Dimensional Geometric Variational Problems, Wiley, New York, 1991 | MR | Zbl
[12] Geometry and Physics, Springer, 2009 | DOI | MR | Zbl
[13] J. Jost, L. Liu, M. Zhu, Geometric analysis of the action functional of the nonlinear supersymmetric sigma model, MPI MIS Preprint: 77/2015.
[14] A global weak solution of the Dirac-harmonic map flow, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 34 (2017) no. 7, pp. 1851–1882 | Numdam | MR | Zbl
[15] J. Jost, L. Liu, M. Zhu, The qualitative behavior at the free boundary for approximate harmonic maps from surfaces, MPI MIS Preprint: 26/2016. | MR
[16] Bubbling analysis near the Dirichlet boundary for approximate harmonic maps from surfaces, Commun. Anal. Geom. (2017) (MPI MIS Preprint: 38/2016 in press) | MR | Zbl
[17] Blow-up analysis for approximate Dirac-harmonic maps in dimension 2 with applications to Dirac-harmonic heat flow, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4 (26 pp) | DOI | MR | Zbl
[18] Spin Geometry, vol. 38, Princeton University Press, 1989 | MR | Zbl
[19] Energy identity for the maps from a surface with tension field bounded in , Pac. J. Math., Volume 260 (2012) no. 1, pp. 181–195 | MR | Zbl
[20] A weak energy identity and the length of necks for a sequence of Sacks–Uhlenbeck -harmonic maps, Adv. Math., Volume 225 (2010) no. 3, pp. 1134–1184 | MR | Zbl
[21] Energy identity of harmonic map flow from surfaces at finite singular time, Calc. Var. Partial Differ. Equ., Volume 6 (1998), pp. 369–380 | MR | Zbl
[22] Harmonic and quasi-harmonic spheres. II, Commun. Anal. Geom., Volume 10 (2002) no. 2, pp. 341–375 | MR | Zbl
[23] No neck for Dirac-harmonic maps, Calc. Var. Partial Differ. Equ., Volume 52 (2015) no. 1–2, pp. 1–15 | MR | Zbl
[24] Bubble tree convergence for harmonic maps, J. Differ. Geom., Volume 44 (1996) no. 3, pp. 595–633 | DOI | MR | Zbl
[25] On singularities of the heat flow for harmonic maps from surfaces into spheres, Commun. Anal. Geom., Volume 3 (1995), pp. 297–315 | DOI | MR | Zbl
[26] Bubbling of the heat flows for harmonic maps from surfaces, Commun. Pure Appl. Math., Volume 50 (1997) no. 4, pp. 295–310 | DOI | MR | Zbl
[27] The existence of minimal immersions of 2-spheres, Ann. Math., Volume 113 (1981), pp. 1–24 | DOI | MR | Zbl
[28] Regularity at the free boundary for Dirac-harmonic maps from surfaces, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 2 | DOI | MR | Zbl
[29] Remarks on approximate harmonic maps in dimension two, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 2 (24 pp) | DOI | MR | Zbl
[30] Energy identity for approximate harmonic maps from surface to general targets, J. Funct. Anal., Volume 272 (2017) no. 2, pp. 776–803 | DOI | MR | Zbl
[31] Gromov's compactness theorem for pseudo-holomorphic curves, Trans. Am. Math. Soc., Volume 342 (1994) no. 2, pp. 671–694 | MR | Zbl
[32] Energy identities for Dirac-harmonic maps, Calc. Var. Partial Differ. Equ., Volume 28 (2007) no. 1, pp. 121–138 | DOI | MR | Zbl
[33] Dirac-harmonic maps from degenerating spin surfaces I: the Neveu–Schwarz case, Calc. Var. Partial Differ. Equ., Volume 35 (2009) no. 2, pp. 169–189 | MR | Zbl
[34] Regularity of weakly Dirac-harmonic maps to hypersurfaces, Ann. Glob. Anal. Geom., Volume 35 (2009) no. 4, pp. 405–412 | MR | Zbl
Cité par Sources :