Regularity of solutions to scalar conservation laws with a force
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 505-521.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We prove regularity estimates for entropy solutions to scalar conservation laws with a force. Based on the kinetic form of a scalar conservation law, a new decomposition of entropy solutions is introduced, by means of a decomposition in the velocity variable, adapted to the non-degeneracy properties of the flux function. This allows a finer control of the degeneracy behavior of the flux. In addition, this decomposition allows to make use of the fact that the entropy dissipation measure has locally finite singular moments. Based on these observations, improved regularity estimates for entropy solutions to (forced) scalar conservation laws are obtained.

DOI : 10.1016/j.anihpc.2018.07.002
Mots-clés : Scalar conservation laws, Averaging Lemma
@article{AIHPC_2019__36_2_505_0,
     author = {Gess, Benjamin and Lamy, Xavier},
     title = {Regularity of solutions to scalar conservation laws with a force},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {505--521},
     publisher = {Elsevier},
     volume = {36},
     number = {2},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.07.002},
     mrnumber = {3913196},
     zbl = {1447.35219},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2018.07.002/}
}
TY  - JOUR
AU  - Gess, Benjamin
AU  - Lamy, Xavier
TI  - Regularity of solutions to scalar conservation laws with a force
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 505
EP  - 521
VL  - 36
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2018.07.002/
DO  - 10.1016/j.anihpc.2018.07.002
LA  - en
ID  - AIHPC_2019__36_2_505_0
ER  - 
%0 Journal Article
%A Gess, Benjamin
%A Lamy, Xavier
%T Regularity of solutions to scalar conservation laws with a force
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 505-521
%V 36
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2018.07.002/
%R 10.1016/j.anihpc.2018.07.002
%G en
%F AIHPC_2019__36_2_505_0
Gess, Benjamin; Lamy, Xavier. Regularity of solutions to scalar conservation laws with a force. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 2, pp. 505-521. doi : 10.1016/j.anihpc.2018.07.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2018.07.002/

[1] Bénilan, P.; Carrillo, J.; Wittbold, P. Renormalized entropy solutions of scalar conservation laws, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 29 (2000) no. 2, pp. 313–327 | Numdam | MR | Zbl

[2] Bergh, J.; Löfström, J. Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer-Verlag, Berlin-New York, 1976 | DOI | MR | Zbl

[3] Berthelin, F.; Junca, S. Averaging lemmas with a force term in the transport equation, J. Math. Pures Appl. (9), Volume 93 (2010) no. 2, pp. 113–131 | DOI | MR | Zbl

[4] Bourdarias, C.; Gisclon, M.; Junca, S. Fractional BV spaces and applications to scalar conservation laws, J. Hyperbolic Differ. Equ., Volume 11 (2014) no. 4, pp. 655–677 | DOI | MR | Zbl

[5] Chen, G.-Q.; Perthame, B. Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 20 (2003) no. 4, pp. 645–668 | Numdam | MR | Zbl

[6] Cheng, K. A regularity theorem for a nonconvex scalar conservation law, J. Differ. Equ., Volume 61 (1986) no. 1, pp. 79–127 | DOI | MR | Zbl

[7] Crippa, G.; Otto, F.; Westdickenberg, M. Regularizing effect of nonlinearity in multidimensional scalar conservation laws, Transport Equations and Multi-D Hyperbolic Conservation Laws, Lect. Notes Unione Mat. Ital., vol. 5, Springer, Berlin, 2008, pp. 77–128 | DOI | MR | Zbl

[8] De Lellis, C.; Otto, F.; Westdickenberg, M. Structure of entropy solutions for multi-dimensional scalar conservation laws, Arch. Ration. Mech. Anal., Volume 170 (2003) no. 2, pp. 137–184 | MR | Zbl

[9] De Lellis, C.; Westdickenberg, M. On the optimality of velocity averaging lemmas, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 20 (2003) no. 6, pp. 1075–1085 | Numdam | MR | Zbl

[10] DiPerna, R.J.; Lions, P.-L.; Meyer, Y. Lp regularity of velocity averages, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 8 (1991) no. 3–4, pp. 271–287 | Numdam | MR | Zbl

[11] B. Gess, Sobolev regularity for the porous medium equation with a force, preprint. | MR

[12] Golse, F.; Perthame, B. Optimal regularizing effect for scalar conservation laws, Rev. Mat. Iberoam., Volume 29 (2013) no. 4, pp. 1477–1504 | DOI | MR | Zbl

[13] Ishikawa, S.; Kobayasi, K. The relationship between kinetic solutions and renormalized entropy solutions of scalar conservation laws, Differential & Difference Equations and Applications, Hindawi Publ. Corp., New York, 2006, pp. 433–440 | MR | Zbl

[14] Jabin, P.-E. Some regularizing methods for transport equations and the regularity of solutions to scalar conservation laws, Séminaire: Équations aux Dérivées Partielles, 2008–2009, Sémin. Équ. Dériv. Partielles, École Polytech, Palaiseau, 2010 (pages Exp No. XVI, 15) | MR | Zbl

[15] Kružkov, S.N. First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), Volume 81 (1970) no. 123, pp. 228–255 | MR | Zbl

[16] Lécureux-Mercier, M. Improved stability estimates for general scalar conservation laws, J. Hyperbolic Differ. Equ., Volume 8 (2011) no. 4, pp. 727–757 | DOI | MR | Zbl

[17] Lions, P.-L.; Perthame, B.; Tadmor, E. A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Am. Math. Soc., Volume 7 (1994) no. 1, pp. 169–191 | MR | Zbl

[18] Perthame, B. Kinetic Formulation of Conservation Laws, Oxford Lecture Series in Mathematics and Its Applications, vol. 21, Oxford University Press, Oxford, 2002 | MR | Zbl

[19] Tadmor, E.; Tao, T. Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Commun. Pure Appl. Math., Volume 60 (2007) no. 10, pp. 1488–1521 | DOI | MR | Zbl

Cité par Sources :