A conservation law with spatially localized sublinear damping
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 1, pp. 13-50.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider a general conservation law on the circle, in the presence of a sublinear damping. If the damping acts on the whole circle, then the solution becomes identically zero in finite time, following the same mechanism as the corresponding ordinary differential equation. When the damping acts only locally in space, we show a dichotomy: if the flux function is not zero at the origin, then the transport mechanism causes the extinction of the solution in finite time, as in the first case. On the other hand, if zero is a non-degenerate critical point of the flux function, then the solution becomes extinct in finite time only inside the damping zone, decays algebraically uniformly in space, and we exhibit a boundary layer, shrinking with time, around the damping zone. Numerical illustrations show how similar phenomena may be expected for other equations.

DOI : 10.1016/j.anihpc.2019.03.002
Mots-clés : One-dimensional conservation laws, Sublinear damping, Finite time extinction, Finite time control, Long time behavior
Besse, Christophe 1 ; Carles, Rémi 2 ; Ervedoza, Sylvain 1

1 Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS IMT, F-31062 Toulouse Cedex 9, France
2 Univ Rennes, CNRS, IRMAR, UMR 6625, F-35000 Rennes, France
@article{AIHPC_2020__37_1_13_0,
     author = {Besse, Christophe and Carles, R\'emi and Ervedoza, Sylvain},
     title = {A conservation law with spatially localized sublinear damping},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {13--50},
     publisher = {Elsevier},
     volume = {37},
     number = {1},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.03.002},
     mrnumber = {4049915},
     zbl = {1430.35154},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2019.03.002/}
}
TY  - JOUR
AU  - Besse, Christophe
AU  - Carles, Rémi
AU  - Ervedoza, Sylvain
TI  - A conservation law with spatially localized sublinear damping
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 13
EP  - 50
VL  - 37
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2019.03.002/
DO  - 10.1016/j.anihpc.2019.03.002
LA  - en
ID  - AIHPC_2020__37_1_13_0
ER  - 
%0 Journal Article
%A Besse, Christophe
%A Carles, Rémi
%A Ervedoza, Sylvain
%T A conservation law with spatially localized sublinear damping
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 13-50
%V 37
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2019.03.002/
%R 10.1016/j.anihpc.2019.03.002
%G en
%F AIHPC_2020__37_1_13_0
Besse, Christophe; Carles, Rémi; Ervedoza, Sylvain. A conservation law with spatially localized sublinear damping. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 1, pp. 13-50. doi : 10.1016/j.anihpc.2019.03.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2019.03.002/

[1] Adly, S.; Attouch, H.; Cabot, A. Finite time stabilization of nonlinear oscillators subject to dry friction, Nonsmooth Mechanics and Analysis, Adv. Mech. Math., vol. 12, Springer, New York, 2006, pp. 289–304 | MR

[2] Aguirre, J.; Escobedo, M. A Cauchy problem for utΔu=up with 0<p<1. Asymptotic behaviour of solutions, Ann. Fac. Sci. Toulouse Math., Volume 5 (1986/1987) no. 8, pp. 175–203 | Numdam | MR | Zbl

[3] Amadori, D.; Gosse, L. Error estimates for well-balanced schemes on simple balance laws, One-Dimensional Position-Dependent Models, SpringerBriefs in Mathematics, Springer, Cham, 2015 (BCAM Basque Center for Applied Mathematics, Bilbao. With a foreword by François Bouchut, BCAM SpringerBriefs) | DOI | MR | Zbl

[4] Amann, H.; Diaz, J.I. A note on the dynamics of an oscillator in the presence of strong friction, Nonlinear Anal., Volume 55 (2003), pp. 209–216 | DOI | MR | Zbl

[5] Amontons, G. De la resistance causée dans les machines, Mémoires de L'Académie Royale des Sciences Paris A, 1699, pp. 257–282

[6] Baji, B.; Cabot, A.; Díaz, J.I. Asymptotics for some nonlinear damped wave equation: finite time convergence versus exponential decay results, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 24 (2007), pp. 1009–1028 | DOI | Numdam | MR | Zbl

[7] Bastin, G.; Coron, J.-M. Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Progress in Nonlinear Differential Equations and Their Applications, vol. 88, Birkhäuser/Springer, Cham, 2016 (Subseries in Control) | DOI | MR

[8] Belaud, Y. Time-vanishing properties of solutions of some degenerate parabolic equations with strong absorption, Adv. Nonlinear Stud., Volume 1 (2001), pp. 117–152 | DOI | MR | Zbl

[9] Belaud, Y. Extinction of solutions of some nonlinear parabolic equations, Sovrem. Mat. Fundam. Napravl., Volume 36 (2010), pp. 5–11 | Zbl

[10] Belaud, Y.; Helffer, B.; Véron, L. Long-time vanishing properties of solutions of some semilinear parabolic equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 18 (2001), pp. 43–68 | DOI | Numdam | MR | Zbl

[11] Belaud, Y.; Shishkov, A. Long-time extinction of solutions of some semilinear parabolic equations, J. Differ. Equ., Volume 238 (2007), pp. 64–86 | DOI | MR | Zbl

[12] Belaud, Y.; Shishkov, A. Extinction of solutions of semilinear higher order parabolic equations with degenerate absorption potential, J. Evol. Equ., Volume 10 (2010), pp. 857–882 | DOI | MR | Zbl

[13] Carles, R.; Gallo, C. Finite time extinction by nonlinear damping for the Schrödinger equation, Commun. Partial Differ. Equ., Volume 36 (2011), pp. 961–975 | DOI | MR | Zbl

[14] Carles, R.; Ozawa, T. Finite time extinction for nonlinear Schrödinger equation in 1D and 2D, Commun. Partial Differ. Equ., Volume 40 (2015), pp. 897–917 | DOI | MR | Zbl

[15] Coron, J.-M.; Bastin, G.; d'Andréa Novel, B. Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems, SIAM J. Control Optim., Volume 47 (2008), pp. 1460–1498 | MR | Zbl

[16] Coron, J.-M.; d'Andréa Novel, B.; Bastin, G. A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Autom. Control, Volume 52 (2007), pp. 2–11 | MR

[17] Coulomb, C.A. Théorie des machines simples, en ayant égard au frottement de leurs parties, et la roideur des cordages, Mém. Math. Phys., Volume X (1785), pp. 161–342

[18] Dafermos, C.M. Generalized characteristics and the structure of solutions of hyperbolic conservation laws, Indiana Univ. Math. J., Volume 26 (1977), pp. 1097–1119 | DOI | MR | Zbl

[19] Dafermos, C.M. Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[20] Diaz, J.I.; Véron, L. Existence theory and qualitative properties of the solutions of some first order quasilinear variational inequalities, Indiana Univ. Math. J., Volume 32 (1983), pp. 319–361 | MR | Zbl

[21] Filippov, A.F. Differential Equations With Discontinuous Righthand Sides, Mathematics and Its Applications (Soviet Series), vol. 18, Kluwer Academic Publishers Group, Dordrecht, 1988 (Translated from the Russian) | DOI | MR | Zbl

[22] Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration, Springer Series in Computational Mathematics, vol. 31, Springer, Heidelberg, 2010 | MR | Zbl

[23] Ignat, L.I.; Pozo, A.; Zuazua, E. Large-time asymptotics, vanishing viscosity and numerics for 1-D scalar conservation laws, Math. Comput., Volume 84 (2015), pp. 1633–1662 | MR | Zbl

[24] LeVeque, R. Numerical Methods for Conservation Laws, Lectures in Mathematics, ETH Zürich, Birkhäuser, 1992 | MR | Zbl

[25] LeVeque, R. Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl

[26] H. Olsson, Control systems with friction department of automatic control, Lund Institute of Technology (LTH), 1996.

[27] Perrollaz, V.; Rosier, L. Finite-time stabilization of 2×2 hyperbolic systems on tree-shaped networks, SIAM J. Control Optim., Volume 52 (2014), pp. 143–163 | DOI | MR | Zbl

[28] Quarteroni, A.; Valli, A. Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, Springer, 2008 | Zbl

[29] Vázquez, J.L. The nonlinearly damped oscillator, ESAIM Control Optim. Calc. Var., Volume 9 (2003), pp. 231–246 | DOI | Numdam | MR | Zbl

Cité par Sources :