On considère des immersions de Sobolev d'ordre quelconque dans des espaces de fonctions sur des domaines de
Sobolev embeddings, of arbitrary order, are considered into function spaces on domains of
Mots-clés : Sobolev inequalities, Frostman measures, Ahlfors regular measures, Rearrangement-invariant spaces, Lorentz spaces
@article{AIHPC_2020__37_1_105_0, author = {Cianchi, Andrea and Pick, Lubo\v{s} and Slav{\'\i}kov\'a, Lenka}, title = {Sobolev embeddings, rearrangement-invariant spaces and {Frostman} measures}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {105--144}, publisher = {Elsevier}, volume = {37}, number = {1}, year = {2020}, doi = {10.1016/j.anihpc.2019.06.004}, mrnumber = {4049918}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2019.06.004/} }
TY - JOUR AU - Cianchi, Andrea AU - Pick, Luboš AU - Slavíková, Lenka TI - Sobolev embeddings, rearrangement-invariant spaces and Frostman measures JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 105 EP - 144 VL - 37 IS - 1 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2019.06.004/ DO - 10.1016/j.anihpc.2019.06.004 LA - en ID - AIHPC_2020__37_1_105_0 ER -
%0 Journal Article %A Cianchi, Andrea %A Pick, Luboš %A Slavíková, Lenka %T Sobolev embeddings, rearrangement-invariant spaces and Frostman measures %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 105-144 %V 37 %N 1 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2019.06.004/ %R 10.1016/j.anihpc.2019.06.004 %G en %F AIHPC_2020__37_1_105_0
Cianchi, Andrea; Pick, Luboš; Slavíková, Lenka. Sobolev embeddings, rearrangement-invariant spaces and Frostman measures. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 1, pp. 105-144. doi : 10.1016/j.anihpc.2019.06.004. https://www.numdam.org/articles/10.1016/j.anihpc.2019.06.004/
[1] Traces of potentials arising from translation invariant operators, Ann. Sc. Norm. Super. Pisa, Volume 25 (1971), pp. 203–217 | Numdam | MR | Zbl
[2] A trace inequality for generalized potentials, Stud. Math., Volume 48 (1973), pp. 99–105 | DOI | MR | Zbl
[3] Sharp Sobolev type embeddings on the entire Euclidean space, Commun. Pure Appl. Anal., Volume 17 (2018) no. 5, pp. 2011–2037 | MR
[4] Some isoperimetric inequalities on
[5] Problèmes isopérimetriques et espaces de Sobolev, J. Differ. Geom., Volume 11 (1976), pp. 573–598 | DOI | MR | Zbl
[6] Interpolation of Operators, Pure and Applied Mathematics, vol. 129, Academic Press, Boston, 1988 | MR | Zbl
[7] A note on limiting cases of Sobolev embeddings and convolution inequalities, Commun. Partial Differ. Equ., Volume 5 (1980), pp. 773–789 | DOI | MR | Zbl
[8] On embeddings between classical Lorentz spaces, Math. Inequal. Appl., Volume 4 (2001), pp. 397–428 | MR | Zbl
[9] On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions, Commun. Pure Appl. Math., Volume 54 (2001), pp. 229–258 | DOI | MR | Zbl
[10] Compactness of Sobolev-type trace operators, Nonlinear Anal., Volume 183 (2019), pp. 43–69 | DOI | MR
[11] Second-order derivatives and rearrangements, Duke Math. J., Volume 105 (2000), pp. 355–385 | DOI | MR | Zbl
[12] Symmetrization and second-order Sobolev inequalities, Ann. Mat. Pura Appl., Volume 183 (2004), pp. 45–77 | DOI | MR | Zbl
[13] Boundary trace inequalities and rearrangements, J. Anal. Math., Volume 105 (2008), pp. 241–265 | DOI | MR | Zbl
[14] Sobolev embeddings into BMO, VMO and
[15] An optimal endpoint trace embedding, Ann. Inst. Fourier (Grenoble), Volume 60 (2010), pp. 939–951 | DOI | Numdam | MR | Zbl
[16] Optimal Sobolev trace embeddings, Trans. Am. Math. Soc., Volume 368 (2016), pp. 8349–8382 | DOI | MR
[17] Higher-order Sobolev embeddings and isoperimetric inequalities, Adv. Math., Volume 273 (2015), pp. 568–650 | DOI | MR | Zbl
[18] A. Cianchi, L. Pick, L. Slavíková, Sobolev embeddings in Orlicz and Lorentz spaces with measures, preprint. | MR
[19] On the modulus of continuity of weakly differentiable functions, Indiana Univ. Math. J., Volume 60 (2011), pp. 1939–1973 | DOI | MR | Zbl
[20] Conductor inequalities and criteria for Sobolev-Lorentz two-weight inequalities (English summary) Sobolev spaces in mathematics. II, Int. Math. Ser. (N. Y.), vol. 9, Springer, New York, 2009, pp. 103–121 | MR | Zbl
[21] Can optimal rearrangement invariant Sobolev imbeddings be further extended?, Indiana Univ. Math. J., Volume 56 (2007), pp. 1479–1497 | DOI | MR | Zbl
[22] Optimal domains for the kernel operator associated with Sobolev's inequality, Stud. Math., Volume 158 (2003), pp. 131–152 | DOI | MR | Zbl
[23] Interpolation of linear operators on Sobolev spaces, Ann. Math., Volume 109 (1979), pp. 583–599 | MR | Zbl
[24] Rigidity results with applications to best constants and symmetry of Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities, Calc. Var. Partial Differ. Equ., Volume 54 (2015), pp. 2465–2481 | DOI | MR
[25] Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces, Invent. Math., Volume 206 (2016), pp. 397–440 | DOI | MR
[26] Interpolation of integral operators on scales of generalized Lorentz–Zygmund spaces, Math. Nachr., Volume 182 (1996), pp. 127–181 | DOI | MR | Zbl
[27] Normal and integral currents, Ann. Math., Volume 72 (1960), pp. 458–520 | DOI | MR | Zbl
[28] Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type, J. Differ. Equ., Volume 191 (2003), pp. 121–142 | DOI | MR | Zbl
[29] Embeddings of Sobolev-type spaces into generalized Hölder spaces involving
[30] Characterization of embeddings of Sobolev-type spaces into generalized Hölder spaces defined by
[31] Reduction theorems for Sobolev embeddings into the spaces of Hölder, Morrey and Campanato type, Math. Nachr., Volume 289 (2016), pp. 1626–1635 | DOI | MR
[32] Interpolation of quasi-normed spaces, Math. Scand., Volume 26 (1970), pp. 177–199 | DOI | MR | Zbl
[33] Optimal Sobolev embeddings, Forum Math., Volume 18 (2006), pp. 535–570 | DOI | MR | Zbl
[34] The trace theorem, the Luzin
[35] An elementary proof of sharp Sobolev embeddings, Proc. Am. Math. Soc., Volume 130 (2002) no. 2, pp. 555–563 | DOI | MR | Zbl
[36] Generalized duality of some Banach function spaces, Nederl. Akad. Wetensch. Indag. Math., Volume 51 (1989), pp. 323–338 | MR | Zbl
[37] Classes of regions and imbedding theorems for function spaces, Dokl. Akad. Nauk SSSR, Volume 133 (1960), pp. 527–530 (Russian); English translation: Sov. Math. Dokl., 1, 1960, 882–885 | MR | Zbl
[38] On
[39] Certain integral inequalities for functions of many variables, Problems in Mathematical Analysis, Volume vol. 3 (1972), pp. 33–68 (in Russian); English translation: J. Sov. Math., 1, 1973, 205–234 | Zbl
[40] Capacity-estimates for “fractional” norms Zap, Nauchn. Semin. Leningr. Otd. Mat. Int. Steklova, Volume 70 (1977), pp. 161–168 (in Russian); English translation: J. Sov. Math., 23, 1983, 1997–2003 | MR | Zbl
[41] Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer, Berlin, 2011 | DOI | MR | Zbl
[42] A sharp form of an inequality by Trudinger, Indiana Univ. Math. J., Volume 20 (1971), pp. 1077–1092 | DOI | MR | Zbl
[43] Convolution operators and
[44] On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl., Volume 2 (1999), pp. 391–467 | MR | Zbl
[45] Espaces d'interpolation et théorème de Soboleff, Ann. Inst. Fourier, Volume 16 (1966), pp. 279–317 | DOI | Numdam | MR | Zbl
[46] De Gruyter Series in Nonlinear Analysis and Applications, vol. 1, De Gruyter, Berlin (2013), pp. 14 | MR | Zbl
[47] A two weight weak type inequality for fractional integrals, Trans. Am. Math. Soc., Volume 281 (1984) no. 1, pp. 339–345 | DOI | MR | Zbl
[48] Boundedness of classical operators on classical Lorentz spaces, Stud. Math., Volume 96 (1990), pp. 145–158 | DOI | MR | Zbl
[49] Compactness of higher-order Sobolev embeddings, Publ. Mat., Volume 59 (2015), pp. 373–448 | DOI | MR
[50] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970 | MR | Zbl
[51] Editor's note: the differentiability of functions in
[52] Best constant in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353–372 | DOI | MR | Zbl
[53] H. Turčinová, Basic functional properties of certain scale of rearrangement-invariant spaces, Prague, Preprint, 2019. | MR
- Constrained differential operators, Sobolev inequalities, and Riesz potentials, arXiv (2025) | DOI:10.48550/arxiv.2501.07874 | arXiv:2501.07874
- Compact Sobolev embeddings of radially symmetric functions, arXiv (2025) | DOI:10.48550/arxiv.2503.05922 | arXiv:2503.05922
- Reduction Principles, Geometric and Analytic Aspects of Functional Variational Principles, Volume 2348 (2024), p. 151 | DOI:10.1007/978-3-031-67601-7_3
- On the Properties of Quasi-Banach Function Spaces, The Journal of Geometric Analysis, Volume 34 (2024) no. 8 | DOI:10.1007/s12220-024-01673-y
- Optimal function spaces in weighted Sobolev embeddings with
-homogeneous weights, arXiv (2024) | DOI:10.48550/arxiv.2407.07806 | arXiv:2407.07806 - Optimality problems in Orlicz spaces, Advances in Mathematics, Volume 432 (2023), p. 109273 | DOI:10.1016/j.aim.2023.109273
- Optimal behavior of weighted Hardy operators on rearrangement‐invariant spaces, Mathematische Nachrichten, Volume 296 (2023) no. 8, p. 3492 | DOI:10.1002/mana.202200015
- Basic functional properties of certain scale of rearrangement‐invariant spaces, Mathematische Nachrichten, Volume 296 (2023) no. 8, p. 3652 | DOI:10.1002/mana.202000463
- Optimal Sobolev inequalities in the hyperbolic space, arXiv (2023) | DOI:10.48550/arxiv.2305.06797 | arXiv:2305.06797
- Compactness of Sobolev-type embeddings with measures, Communications in Contemporary Mathematics, Volume 24 (2022) no. 09 | DOI:10.1142/s021919972150036x
- Weighted Inequalities for a Superposition of the Copson Operator and the Hardy Operator, Journal of Fourier Analysis and Applications, Volume 28 (2022) no. 2 | DOI:10.1007/s00041-022-09918-6
- Sobolev anisotropic inequalities with monomial weights, Journal of Mathematical Analysis and Applications, Volume 505 (2022) no. 1, p. 125557 | DOI:10.1016/j.jmaa.2021.125557
- On the autonomous Nemytskii operator between Sobolev spaces in the critical and supercritical cases: Well-definedness and higher-order chain rule, Nonlinear Analysis, Volume 214 (2022), p. 112576 | DOI:10.1016/j.na.2021.112576
- Discretization and antidiscretization of Lorentz norms with no restrictions on weights, Revista Matemática Complutense, Volume 35 (2022) no. 2, p. 615 | DOI:10.1007/s13163-021-00399-7
- Optimality problems in Orlicz spaces, arXiv (2022) | DOI:10.48550/arxiv.2209.14208 | arXiv:2209.14208
- Symmetric gradient Sobolev spaces endowed with rearrangement-invariant norms, Advances in Mathematics, Volume 391 (2021), p. 107954 | DOI:10.1016/j.aim.2021.107954
- Optimal behavior of weighted Hardy operators on rearrangement-invariant spaces, arXiv (2021) | DOI:10.48550/arxiv.2110.05347 | arXiv:2110.05347
- Sobolev embeddings in Orlicz and Lorentz spaces with measures, Journal of Mathematical Analysis and Applications, Volume 485 (2020) no. 2, p. 123827 | DOI:10.1016/j.jmaa.2019.123827
- Compactness of Sobolev embeddings and decay of norms, arXiv (2020) | DOI:10.48550/arxiv.2011.03450 | arXiv:2011.03450
- Discretization and antidiscretization of Lorentz norms with no restrictions on weights, arXiv (2020) | DOI:10.48550/arxiv.2011.00104 | arXiv:2011.00104
Cité par 20 documents. Sources : Crossref, NASA ADS