Well-posedness of semilinear heat equations in L 1
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 709-725.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The problem of obtaining necessary and sufficient conditions for local existence of non-negative solutions in Lebesgue spaces for semilinear heat equations having monotonically increasing source term f has only recently been resolved (Laister et al. (2016)). There, for the more difficult case of initial data in L1, a necessary and sufficient integral condition on f emerged. Here, subject to this integral condition, we consider other fundamental properties of solutions with L1 initial data of indefinite sign, namely: uniqueness, regularity, continuous dependence and comparison. We also establish sufficient conditions for the global-in-time continuation of solutions for small initial data in L1.

DOI : 10.1016/j.anihpc.2019.12.001
Mots-clés : Heat equation, Existence, Uniqueness, Continuous dependence, Comparison, Global solution
Laister, R. 1 ; Sierżęga, M. 2

1 Department of Engineering Design and Mathematics, University of the West of England, Bristol BS16 1QY, UK
2 Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
@article{AIHPC_2020__37_3_709_0,
     author = {Laister, R. and Sier\.z\k{e}ga, M.},
     title = {Well-posedness of semilinear heat equations in {\protect\emph{L}
}         \protect\textsuperscript{1}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {709--725},
     publisher = {Elsevier},
     volume = {37},
     number = {3},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.12.001},
     zbl = {1442.35220},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2019.12.001/}
}
TY  - JOUR
AU  - Laister, R.
AU  - Sierżęga, M.
TI  - Well-posedness of semilinear heat equations in L
         1
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 709
EP  - 725
VL  - 37
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2019.12.001/
DO  - 10.1016/j.anihpc.2019.12.001
LA  - en
ID  - AIHPC_2020__37_3_709_0
ER  - 
%0 Journal Article
%A Laister, R.
%A Sierżęga, M.
%T Well-posedness of semilinear heat equations in L
         1
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 709-725
%V 37
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2019.12.001/
%R 10.1016/j.anihpc.2019.12.001
%G en
%F AIHPC_2020__37_3_709_0
Laister, R.; Sierżęga, M. Well-posedness of semilinear heat equations in L
         1. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 709-725. doi : 10.1016/j.anihpc.2019.12.001. http://archive.numdam.org/articles/10.1016/j.anihpc.2019.12.001/

[1] Arrieta, J.; Carvalho, A. Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Am. Math. Soc., Volume 352 (2000), pp. 285–310 | Zbl

[2] Baras, P.; Pierre, M. Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985), pp. 185–212 | DOI | Numdam | MR | Zbl

[3] Brézis, H.; Cazenave, T. A nonlinear heat equation with singular initial data, J. Anal. Math., Volume 68 (1996), pp. 277–304 | DOI | Zbl

[4] Celik, C.; Zhou, Z. No local L1 solution for a nonlinear heat equation, Commun. Partial Differ. Equ., Volume 28 (2003), pp. 1807–1831 | DOI | Zbl

[5] Fila, M.; King, J.R.; Winkler, M.; Yanagida, E. Grow-up rate of solutions of a semilinear parabolic equation with a critical exponent, Adv. Differ. Equ., Volume 12 (2007), pp. 1–26 | Zbl

[6] Filippas, S.; Herrero, M.A.; Velázquez, J.J.L. Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., Volume 456 (2000), pp. 2957–2982 | Zbl

[7] Fujishima, Y.; Ioku, N. Existence and nonexistence of solutions for the heat equation with a superlinear source term, J. Math. Pures Appl., Volume 118 (2018), pp. 128–158 | DOI | Zbl

[8] Fujita, H. On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α , J. Sci. Univ. Tokyo, Sect. I, Volume 13 (1966), pp. 109–124 | Zbl

[9] Hayakawa, K. On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 49 (1973), pp. 503–505 | DOI | Zbl

[10] Kaplan, S. On the growth of solutions of quasi-linear parabolic equations, Commun. Pure Appl. Math., Volume 16 (1963), pp. 305–330 | DOI | Zbl

[11] Kobayashi, K.; Sirao, T.; Tanaka, H. On the growing up problem for semilinear heat equations, J. Math. Soc. Jpn., Volume 29 (1977) no. 3, pp. 407–425 | DOI | Zbl

[12] Laister, R.; Robinson, J.C.; Sierżęga, M.; Vidal-López, A. A complete characterisation of local existence for semilinear parabolic equations in Lebesgue spaces, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 6, pp. 1519–1538 | Numdam | Zbl

[13] Li, K. A characteristic of local existence for nonlinear fractional heat equations in Lebesgue spaces, Comput. Math. Appl., Volume 73 (2017), pp. 653–665 | Zbl

[14] Matos, J.; Terraneo, E. Nonuniqueness for a critical nonlinear heat equation with any initial data, Nonlinear Anal., Volume 55 (2003), pp. 927–936 | DOI | Zbl

[15] Mitrinović, D.S.; Pečarić, J.; Fink, A.M. Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, 1991 | DOI | Zbl

[16] Ni, W-M.; Sacks, P. Singular behavior in nonlinear parabolic equations, Trans. Am. Math. Soc., Volume 287 (1985), pp. 657–671 | Zbl

[17] Poláčik, P.; Yanagida, E. On bounded and unbounded global solutions of a supercritical semilinear heat equation, Math. Ann., Volume 327 (2003), pp. 745–771 | Zbl

[18] Quittner, P.; Souplet, P. Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Birkhäuser, Basel, 2019 | Zbl

[19] Robinson, J.C.; Sierżęga, M. Supersolutions for a class of semilinear heat equations, Rev. Mat. Complut., Volume 26 (2013), pp. 341–360 | DOI | Zbl

[20] Sugitani, S. On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math., Volume 12 (1975), pp. 45–51 | Zbl

[21] Weissler, F.B. Semilinear evolution equations in Banach spaces, J. Funct. Anal., Volume 32 (1979), pp. 277–296 | DOI | Zbl

[22] Weissler, F.B. Local existence and nonexistence for semilinear parabolic equations in Lp , Indiana Univ. Math. J., Volume 29 (1980), pp. 79–102 | DOI | Zbl

[23] Weissler, F.B. Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math., Volume 38 (1981), pp. 29–40 | DOI | Zbl

Cité par Sources :