Convex integration solutions to the transport equation with full dimensional concentration
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1075-1108.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We construct infinitely many incompressible Sobolev vector fields uCtWx1,p˜ on the periodic domain Td for which uniqueness of solutions to the transport equation fails in the class of densities ρCtLxp, provided 1/p+1/p˜>1+1/d. The same result applies to the transport-diffusion equation, if, in addition, p<d.

DOI : 10.1016/j.anihpc.2020.03.002
Mots-clés : Transport equation, Continuity equation, Convex integration, Non-uniqueness, Concentrated Mikado
Modena, Stefano 1 ; Sattig, Gabriel 2

1 Technische Universität Darmstadt, Fachbereich Mathematik, D-64289 Darmstadt, Germany
2 Universität Leipzig, Mathematisches Institut,D-04109 Leipzig, Germany
@article{AIHPC_2020__37_5_1075_0,
     author = {Modena, Stefano and Sattig, Gabriel},
     title = {Convex integration solutions to the transport equation with full dimensional concentration},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1075--1108},
     publisher = {Elsevier},
     volume = {37},
     number = {5},
     year = {2020},
     doi = {10.1016/j.anihpc.2020.03.002},
     mrnumber = {4138227},
     zbl = {1458.35363},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.002/}
}
TY  - JOUR
AU  - Modena, Stefano
AU  - Sattig, Gabriel
TI  - Convex integration solutions to the transport equation with full dimensional concentration
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 1075
EP  - 1108
VL  - 37
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.002/
DO  - 10.1016/j.anihpc.2020.03.002
LA  - en
ID  - AIHPC_2020__37_5_1075_0
ER  - 
%0 Journal Article
%A Modena, Stefano
%A Sattig, Gabriel
%T Convex integration solutions to the transport equation with full dimensional concentration
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 1075-1108
%V 37
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.002/
%R 10.1016/j.anihpc.2020.03.002
%G en
%F AIHPC_2020__37_5_1075_0
Modena, Stefano; Sattig, Gabriel. Convex integration solutions to the transport equation with full dimensional concentration. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1075-1108. doi : 10.1016/j.anihpc.2020.03.002. http://archive.numdam.org/articles/10.1016/j.anihpc.2020.03.002/

[1] Ambrosio, L. Transport equation and Cauchy problem for BV vector fields, Invent. Math., Volume 158 (2004) no. 2, pp. 227–260 | DOI | MR | Zbl

[2] Ambrosio, L. Well posedness of ODE's and continuity equations with nonsmooth vector fields, and applications, Rev. Mat. Complut., Volume 30 (2017) no. 3, pp. 427–450 | DOI | MR | Zbl

[3] Bianchini, S.; Bonicatto, P. A uniqueness result for the decomposition of vector fields in Rd , Invent. Math. (2019) | MR | Zbl

[4] Buckmaster, T.; Colombo, M.; Vicol, V. Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1, 2018 | arXiv

[5] Buckmaster, T.; De Lellis, C.; Székelyhidi, L. Jr.; Vicol, V. Onsager's conjecture for admissible weak solutions, Commun. Pure Appl. Math., Volume 72 (2019) no. 2, pp. 229–274 | DOI | MR | Zbl

[6] Buckmaster, T.; Vicol, V. Nonuniqueness of weak solutions to the Navier-Stokes equation, Ann. Math. (2019) | DOI | MR | Zbl

[7] Caravenna, L.; Crippa, G. Uniqueness and Lagrangianity for solutions with lack of integrability of the continuity equation, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 12, pp. 1168–1173 | DOI | MR | Zbl

[8] Caravenna, L.; Crippa, G. A directional Lipschitz extension lemma, with applications to uniqueness and Lagrangianity for the continuity equation, 2018 | arXiv

[9] Cheskidov, A.; Luo, X. Stationary and discontinuous weak solutions of the Navier-Stokes equations, 2019 | arXiv

[10] Daneri, S.; Székelyhidi, L. Jr. Non-uniqueness and h -principle for Hölder-continuous weak solutions of the Euler equations, Arch. Ration. Mech. Anal., Volume 224 (2017) no. 2, pp. 471–514 | DOI | MR | Zbl

[11] Depauw, N. Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan, C. R. Math. Acad. Sci. Paris, Volume 337 (2003) no. 4, pp. 249–252 | DOI | MR | Zbl

[12] DiPerna, R.J.; Lions, P.-L. Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., Volume 98 (1989) no. 3, pp. 511–547 | DOI | MR | Zbl

[13] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg, 2001 | DOI | MR | Zbl

[14] Isett, P. A Proof of Onsager's Conjecture, Ann. Math., Volume 188 (2018) no. 3, pp. 871–963 | DOI | MR | Zbl

[15] Luo, T.; Titi, E.S. Non-uniqueness of Weak Solutions to Hyperviscous Navier-Stokes Equations – On Sharpness of J.-L. Lions Exponent, 2018 | arXiv | MR

[16] Luo, X. Stationary solutions and nonuniqueness of weak solutions for the Navier-Stokes equations in high dimensions, 2018 | arXiv | MR

[17] Modena, S.; Székelyhidi, L. Jr. Non-uniqueness for the transport equation with Sobolev vector fields, Ann. PDE, Volume 4 (2018) no. 2 | DOI | MR | Zbl

[18] Modena, S.; Székelyhidi, L. Jr. Non-renormalized solutions to the continuity equation, Calc. Var. Partial Differ. Equ., Volume 58 (2019), pp. 208 | DOI | MR | Zbl

[19] Seis, C. A quantitative theory for the continuity equation, Ann. Inst. Henri Poincaré C, Anal. Non Linéaire, Volume 34 (2017) no. 7, pp. 1837–1850 | Numdam | MR | Zbl

Cité par Sources :