Consider the vanishing viscosity limit of the 3D incompressible Oldroyd-B model. It is shown that this set of equations admits a unique global solution with small analytic data uniformly in the coupling parameter ω close to 1 that corresponds to the inviscid case. We justify the limit from the Oldroyd-B model to the inviscid case for all time. Moreover, if the nonlinear term is ignored, similar results hold without resorting to the analytic regularity.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.02.003
Mots-clés : Oldroyd-B model, Global well-posedness, Inviscid limit
@article{AIHPC_2021__38_6_1841_0, author = {Zi, Ruizhao}, title = {Vanishing viscosity limit of the {3D} incompressible {Oldroyd-B} model}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1841--1867}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2021}, doi = {10.1016/j.anihpc.2021.02.003}, mrnumber = {4327899}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.003/} }
TY - JOUR AU - Zi, Ruizhao TI - Vanishing viscosity limit of the 3D incompressible Oldroyd-B model JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1841 EP - 1867 VL - 38 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.003/ DO - 10.1016/j.anihpc.2021.02.003 LA - en ID - AIHPC_2021__38_6_1841_0 ER -
%0 Journal Article %A Zi, Ruizhao %T Vanishing viscosity limit of the 3D incompressible Oldroyd-B model %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1841-1867 %V 38 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.003/ %R 10.1016/j.anihpc.2021.02.003 %G en %F AIHPC_2021__38_6_1841_0
Zi, Ruizhao. Vanishing viscosity limit of the 3D incompressible Oldroyd-B model. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1841-1867. doi : 10.1016/j.anihpc.2021.02.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.003/
[1] Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 343, Springer, Heidelberg, 2011 | MR | Zbl
[2] Calcul symbolique et propagation des singularités pour équations aux dérivées partielles nonlinéaires, Ann. Sci. Éc. Norm. Supér., Volume 14 (1981), pp. 209-246 | Numdam | MR | Zbl
[3] Vanishing viscosity limit for incompressible viscoelasticity in two dimensions, Commun. Pure Appl. Math., Volume 72 (2019), pp. 2063-2120 | MR
[4] Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray, Semin. Congr., Volume 9 (2004), pp. 99-123 | MR | Zbl
[5] Global regularity for some classes of large solutions to the Navier-Stokes equations, Ann. Math., Volume 173 (2011), pp. 983-1012 | MR | Zbl
[6] About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., Volume 33 (2001), pp. 84-112 | MR | Zbl
[7] Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces, Nonlinear Anal., Volume 68 (2008), pp. 1928-1939 | MR | Zbl
[8] The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions, Commun. Partial Differ. Equ., Volume 31 (2006), pp. 1793-1810 | MR | Zbl
[9] Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress, Arch. Ration. Mech. Anal., Volume 206 (2012), pp. 725-740 | MR | Zbl
[10] High Reynolds number and high Weissenberg number Oldroyd-B model with dissipation | arXiv
[11] Global wellposedness to the generalized Oldroyd type models in , J. Differ. Equ., Volume 259 (2015) no. 5, pp. 1958-1966 | MR
[12] Global regularity for some Oldroyd-B type models, Commun. Pure Appl. Math., Volume 68 (2015), pp. 2005-2021 | MR
[13] Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., Volume 141 (2000), pp. 579-614 | MR | Zbl
[14] Global existence results for Oldroyd-B fluids in exterior domains: the case of non-small coupling parameters, Math. Ann., Volume 357 (2013), pp. 687-709 | MR | Zbl
[15] Existence and asymptotic behavior of solutions to the multi-dimensional compressible Euler equations with damping, Nonlinear Anal., Volume 70 (2009), pp. 244-261 | MR | Zbl
[16] Dispersive effects of the incompressible viscoelastic fluids, Discrete Contin. Dyn. Syst., Volume 38 (2018), pp. 5261-5295 | MR
[17] Global solutions to the Oldroyd-B model with a class of large initial data, SIAM J. Math. Anal., Volume 48 (2016), pp. 1054-1084 | MR
[18] Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal., Volume 15 (1990), pp. 849-869 | MR | Zbl
[19] Global existence results for Oldroyd-B fluids in exterior domains, J. Differ. Equ., Volume 252 (2012), pp. 2617-2629 | MR | Zbl
[20] The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., Volume 58 (1975), pp. 181-205 | MR | Zbl
[21] Global solutions of two-dimensional incompressible viscoelastic flows with discontinuous initial data, Commun. Pure Appl. Math., Volume 69 (2016), pp. 372-404 | MR
[22] Global existence with small initial data for three-dimensional incompressible isotropic viscoelastic materials | arXiv
[23] On 2D viscoelasticity with small strain, Arch. Ration. Mech. Anal., Volume 198 (2010), pp. 13-37 | MR | Zbl
[24] Global well-posedness of incompressible elastodynamics in two dimensions, Commun. Pure Appl. Math., Volume 69 (2016), pp. 2072-2106 | MR
[25] Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., Volume 188 (2008), pp. 371-398 | MR | Zbl
[26] Almost global existence for 2-D incompressible isotropic elastodynamics, Trans. Am. Math. Soc., Volume 367 (2015), pp. 8175-8197 | MR
[27] Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit, SIAM J. Math. Anal., Volume 37 (2005), pp. 797-814 | MR | Zbl
[28] On hydrodynamics of viscoelastic fluids, Commun. Pure Appl. Math., Volume 58 (2005), pp. 1437-1471 | MR | Zbl
[29] On the initial-boundary value problem of the incompressible viscoelastic fluid system, Commun. Pure Appl. Math., Volume 61 (2008), pp. 539-558 | MR | Zbl
[30] Global solutions for some Oldroyd models of non-Newtonian flows, Chin. Ann. Math., Ser. B, Volume 21 (2000), pp. 131-146 | MR | Zbl
[31] On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law, Nonlinear Differ. Equ. Appl., Volume 11 (2004), pp. 349-359 | MR | Zbl
[32] Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids, Proc. R. Soc. Lond., Volume 245 (1958), pp. 278-297 | MR | Zbl
[33] Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces, Commun. Math. Phys., Volume 307 (2011), pp. 713-759 | MR | Zbl
[34] Global well-posedness of Prandtl system with small analytic data | arXiv
[35] On the hydrostatic approximation of the Navier-Stokes equations in a thin strip, Adv. Math., Volume 372 (2020) | MR
[36] Global regularity for the Navier-Stokes equations with some classes of large initial data, Anal. PDE, Volume 4 (2011), pp. 95-113 | MR | Zbl
[37] Global well-posedness for the 3D Navier-Stokes equations with ill-prepared initial data, J. Inst. Math. Jussieu, Volume 13 (2014), pp. 395-411 | MR | Zbl
[38] Long time behavior of solutions to the 3D compressible Euler equations with damping, Commun. Partial Differ. Equ., Volume 28 (2003), pp. 795-816 | MR | Zbl
[39] Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit, Commun. Pure Appl. Math., Volume 58 (2005), pp. 750-788 | MR | Zbl
[40] Global existence for three-dimensional incompressible isotropic elastodynamics, Commun. Pure Appl. Math., Volume 60 (2007), pp. 1707-1730 | MR | Zbl
[41] Global existence for the 2D incompressible isotropic elastodynamics for small initial data, Ann. Henri Poincaré, Volume 18 (2017), pp. 1213-1267 | MR
[42] Gevrey stability of hydrostatic approximate for the Navier-Stokes equations in a thin domain | arXiv
[43] Long time well-posedness of Prandtle system with small data, J. Funct. Anal., Volume 270 (2016), pp. 2591-2615 | MR
[44] Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical framework, SIAM J. Math. Anal., Volume 44 (2012), pp. 2266-2288 | MR | Zbl
[45] Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism, J. Funct. Anal., Volume 274 (2018), pp. 2039-2060 | MR
[46] Global solution to the incompressible Oldroyd-B model in the critical framework: the case of the non-small coupling parameter, Arch. Ration. Mech. Anal., Volume 213 (2014), pp. 651-687 | MR | Zbl
Cité par Sources :