Vanishing viscosity limit of the 3D incompressible Oldroyd-B model
Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1841-1867.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Consider the vanishing viscosity limit of the 3D incompressible Oldroyd-B model. It is shown that this set of equations admits a unique global solution with small analytic data uniformly in the coupling parameter ω close to 1 that corresponds to the inviscid case. We justify the limit from the Oldroyd-B model to the inviscid case ω=1 for all time. Moreover, if the nonlinear term gα(τ,u) is ignored, similar results hold without resorting to the analytic regularity.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.02.003
Classification : 76A10, 76B03
Mots-clés : Oldroyd-B model, Global well-posedness, Inviscid limit
Zi, Ruizhao 1

1 School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, PR China
@article{AIHPC_2021__38_6_1841_0,
     author = {Zi, Ruizhao},
     title = {Vanishing viscosity limit of the {3D} incompressible {Oldroyd-B} model},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1841--1867},
     publisher = {Elsevier},
     volume = {38},
     number = {6},
     year = {2021},
     doi = {10.1016/j.anihpc.2021.02.003},
     mrnumber = {4327899},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.003/}
}
TY  - JOUR
AU  - Zi, Ruizhao
TI  - Vanishing viscosity limit of the 3D incompressible Oldroyd-B model
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1841
EP  - 1867
VL  - 38
IS  - 6
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.003/
DO  - 10.1016/j.anihpc.2021.02.003
LA  - en
ID  - AIHPC_2021__38_6_1841_0
ER  - 
%0 Journal Article
%A Zi, Ruizhao
%T Vanishing viscosity limit of the 3D incompressible Oldroyd-B model
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1841-1867
%V 38
%N 6
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.003/
%R 10.1016/j.anihpc.2021.02.003
%G en
%F AIHPC_2021__38_6_1841_0
Zi, Ruizhao. Vanishing viscosity limit of the 3D incompressible Oldroyd-B model. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 1841-1867. doi : 10.1016/j.anihpc.2021.02.003. http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.003/

[1] Bahouri, H.; Chemin, J.-Y.; Danchin, R. Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 343, Springer, Heidelberg, 2011 | MR | Zbl

[2] Bony, J.-M. Calcul symbolique et propagation des singularités pour équations aux dérivées partielles nonlinéaires, Ann. Sci. Éc. Norm. Supér., Volume 14 (1981), pp. 209-246 | Numdam | MR | Zbl

[3] Cai, Y.; Lei, Z.; Lin, F.H.; Masmoudi, N. Vanishing viscosity limit for incompressible viscoelasticity in two dimensions, Commun. Pure Appl. Math., Volume 72 (2019), pp. 2063-2120 | MR

[4] Chemin, J.-Y. Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray, Semin. Congr., Volume 9 (2004), pp. 99-123 | MR | Zbl

[5] Chemin, J.-Y.; Gallagher, I.; Paicu, M. Global regularity for some classes of large solutions to the Navier-Stokes equations, Ann. Math., Volume 173 (2011), pp. 983-1012 | MR | Zbl

[6] Chemin, J.Y.; Masmoudi, N. About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., Volume 33 (2001), pp. 84-112 | MR | Zbl

[7] Chen, Q.L.; Miao, C.X. Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces, Nonlinear Anal., Volume 68 (2008), pp. 1928-1939 | MR | Zbl

[8] Chen, Y.; Zhang, P. The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions, Commun. Partial Differ. Equ., Volume 31 (2006), pp. 1793-1810 | MR | Zbl

[9] Constantin, P.; Kliegl, M. Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress, Arch. Ration. Mech. Anal., Volume 206 (2012), pp. 725-740 | MR | Zbl

[10] Constantin, P.; Wu, J.H.; Zhao, J.F.; Zhu, Y. High Reynolds number and high Weissenberg number Oldroyd-B model with dissipation | arXiv

[11] Elgindi, T.M.; Liu, J.L. Global wellposedness to the generalized Oldroyd type models in R3 , J. Differ. Equ., Volume 259 (2015) no. 5, pp. 1958-1966 | MR

[12] Elgindi, T.M.; Rousset, F. Global regularity for some Oldroyd-B type models, Commun. Pure Appl. Math., Volume 68 (2015), pp. 2005-2021 | MR

[13] Danchin, R. Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., Volume 141 (2000), pp. 579-614 | MR | Zbl

[14] Fang, D.Y.; Hieber, M.; Zi, R.Z. Global existence results for Oldroyd-B fluids in exterior domains: the case of non-small coupling parameters, Math. Ann., Volume 357 (2013), pp. 687-709 | MR | Zbl

[15] Fang, D.Y.; Xu, J. Existence and asymptotic behavior of C1 solutions to the multi-dimensional compressible Euler equations with damping, Nonlinear Anal., Volume 70 (2009), pp. 244-261 | MR | Zbl

[16] Fang, D.Y.; Zhang, T.; Zi, R.Z. Dispersive effects of the incompressible viscoelastic fluids, Discrete Contin. Dyn. Syst., Volume 38 (2018), pp. 5261-5295 | MR

[17] Fang, D.Y.; Zi, R.Z. Global solutions to the Oldroyd-B model with a class of large initial data, SIAM J. Math. Anal., Volume 48 (2016), pp. 1054-1084 | MR

[18] Guillopé, C.; Saut, J.C. Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal., Volume 15 (1990), pp. 849-869 | MR | Zbl

[19] Hieber, M.; Naito, Y.; Shibata, Y. Global existence results for Oldroyd-B fluids in exterior domains, J. Differ. Equ., Volume 252 (2012), pp. 2617-2629 | MR | Zbl

[20] Kato, T. The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., Volume 58 (1975), pp. 181-205 | MR | Zbl

[21] Hu, X.; Lin, F.H. Global solutions of two-dimensional incompressible viscoelastic flows with discontinuous initial data, Commun. Pure Appl. Math., Volume 69 (2016), pp. 372-404 | MR

[22] Kessenich, P. Global existence with small initial data for three-dimensional incompressible isotropic viscoelastic materials | arXiv

[23] Lei, Z. On 2D viscoelasticity with small strain, Arch. Ration. Mech. Anal., Volume 198 (2010), pp. 13-37 | MR | Zbl

[24] Lei, Z. Global well-posedness of incompressible elastodynamics in two dimensions, Commun. Pure Appl. Math., Volume 69 (2016), pp. 2072-2106 | MR

[25] Lei, Z.; Liu, C.; Zhou, Y. Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., Volume 188 (2008), pp. 371-398 | MR | Zbl

[26] Lei, Z.; Sideris, T.C.; Zhou, Y. Almost global existence for 2-D incompressible isotropic elastodynamics, Trans. Am. Math. Soc., Volume 367 (2015), pp. 8175-8197 | MR

[27] Lei, Z.; Zhou, Y. Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit, SIAM J. Math. Anal., Volume 37 (2005), pp. 797-814 | MR | Zbl

[28] Lin, F.H.; Liu, C.; Zhang, P. On hydrodynamics of viscoelastic fluids, Commun. Pure Appl. Math., Volume 58 (2005), pp. 1437-1471 | MR | Zbl

[29] Lin, F.; Zhang, P. On the initial-boundary value problem of the incompressible viscoelastic fluid system, Commun. Pure Appl. Math., Volume 61 (2008), pp. 539-558 | MR | Zbl

[30] Lions, P.L.; Masmoudi, N. Global solutions for some Oldroyd models of non-Newtonian flows, Chin. Ann. Math., Ser. B, Volume 21 (2000), pp. 131-146 | MR | Zbl

[31] Molinet, L.; Talhouk, R. On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law, Nonlinear Differ. Equ. Appl., Volume 11 (2004), pp. 349-359 | MR | Zbl

[32] Oldroyd, J.G. Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids, Proc. R. Soc. Lond., Volume 245 (1958), pp. 278-297 | MR | Zbl

[33] Paicu, M.; Zhang, P. Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces, Commun. Math. Phys., Volume 307 (2011), pp. 713-759 | MR | Zbl

[34] Paicu, M.; Zhang, P. Global well-posedness of Prandtl system with small analytic data | arXiv

[35] Paicu, M.; Zhang, P.; Zhang, Z.F. On the hydrostatic approximation of the Navier-Stokes equations in a thin strip, Adv. Math., Volume 372 (2020) | MR

[36] Paicu, M.; Zhang, Z.F. Global regularity for the Navier-Stokes equations with some classes of large initial data, Anal. PDE, Volume 4 (2011), pp. 95-113 | MR | Zbl

[37] Paicu, M.; Zhang, Z.F. Global well-posedness for the 3D Navier-Stokes equations with ill-prepared initial data, J. Inst. Math. Jussieu, Volume 13 (2014), pp. 395-411 | MR | Zbl

[38] Sideris, T.C.; Thomases, B.; Wang, D.-H. Long time behavior of solutions to the 3D compressible Euler equations with damping, Commun. Partial Differ. Equ., Volume 28 (2003), pp. 795-816 | MR | Zbl

[39] Sideris, T.C.; Thomases, B. Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit, Commun. Pure Appl. Math., Volume 58 (2005), pp. 750-788 | MR | Zbl

[40] Sideris, T.C.; Thomases, B. Global existence for three-dimensional incompressible isotropic elastodynamics, Commun. Pure Appl. Math., Volume 60 (2007), pp. 1707-1730 | MR | Zbl

[41] Wang, X. Global existence for the 2D incompressible isotropic elastodynamics for small initial data, Ann. Henri Poincaré, Volume 18 (2017), pp. 1213-1267 | MR

[42] Wang, C.; Wang, Y.X.; Zhang, Z.F. Gevrey stability of hydrostatic approximate for the Navier-Stokes equations in a thin domain | arXiv

[43] Zhang, P.; Zhang, Z.F. Long time well-posedness of Prandtle system with small data, J. Funct. Anal., Volume 270 (2016), pp. 2591-2615 | MR

[44] Zhang, T.; Fang, D.Y. Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical Lp framework, SIAM J. Math. Anal., Volume 44 (2012), pp. 2266-2288 | MR | Zbl

[45] Zhu, Y. Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism, J. Funct. Anal., Volume 274 (2018), pp. 2039-2060 | MR

[46] Zi, R.Z.; Fang, D.Y.; Zhang, T. Global solution to the incompressible Oldroyd-B model in the critical Lp framework: the case of the non-small coupling parameter, Arch. Ration. Mech. Anal., Volume 213 (2014), pp. 651-687 | MR | Zbl

Cité par Sources :