The soliton resolution for the focusing modified Korteweg-de Vries (mKdV) equation is established for initial conditions in some weighted Sobolev spaces. Our approach is based on the nonlinear steepest descent method and its reformulation through -derivatives. From the view of stationary points, we give precise asymptotic formulas along trajectory for any fixed v. To extend the asymptotics to solutions with initial data in low regularity spaces, we apply a global approximation via PDE techniques. As by-products of our long-time asymptotics, we also obtain the asymptotic stability of nonlinear structures involving solitons and breathers.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2021.02.008
@article{AIHPC_2021__38_6_2005_0, author = {Chen, Gong and Liu, Jiaqi}, title = {Soliton resolution for the focusing modified {KdV} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2005--2071}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2021}, doi = {10.1016/j.anihpc.2021.02.008}, mrnumber = {4327906}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.008/} }
TY - JOUR AU - Chen, Gong AU - Liu, Jiaqi TI - Soliton resolution for the focusing modified KdV equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 2005 EP - 2071 VL - 38 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.008/ DO - 10.1016/j.anihpc.2021.02.008 LA - en ID - AIHPC_2021__38_6_2005_0 ER -
%0 Journal Article %A Chen, Gong %A Liu, Jiaqi %T Soliton resolution for the focusing modified KdV equation %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 2005-2071 %V 38 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.008/ %R 10.1016/j.anihpc.2021.02.008 %G en %F AIHPC_2021__38_6_2005_0
Chen, Gong; Liu, Jiaqi. Soliton resolution for the focusing modified KdV equation. Annales de l'I.H.P. Analyse non linéaire, novembre – décembre 2021, Tome 38 (2021) no. 6, pp. 2005-2071. doi : 10.1016/j.anihpc.2021.02.008. http://archive.numdam.org/articles/10.1016/j.anihpc.2021.02.008/
[1] Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2003 | MR | Zbl
[2] The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., Volume 53 (1974) no. 4, pp. 249-315 | DOI | MR | Zbl
[3] Nonlinear stability of mKdV breathers, Commun. Math. Phys., Volume 324 (2013) no. 1, pp. 233-262 | DOI | MR | Zbl
[4] Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers, Anal. PDE, Volume 8 (2015) no. 3, pp. 629-674 | DOI | MR
[5] Scattering and inverse scattering for first order systems, Commun. Pure Appl. Math., Volume 37 (1984) no. 1, pp. 39-90 | DOI | MR | Zbl
[6] The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond. Ser. A, Volume 278 (1975) no. 1287, pp. 555-601 | DOI | MR | Zbl
[7] Stability and instability of solitary waves of Korteweg-de Vries type, Proc. R. Soc. Lond. Ser. A, Volume 411 (1987) no. 1841, pp. 395-412 | DOI | MR | Zbl
[8] Direct and Inverse Scattering on the Line, Mathematical Surveys and Monographs, vol. 28, American Mathematical Society, Providence, RI, 1988 | MR | Zbl
[9] Long-time asymptotic behavior of the focusing nonlinear Schrödinger equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 4, pp. 887-920 | DOI | Numdam | MR
[10] Long-time asymptotics to the modified KdV equation in weighted Sobolev spaces, 2019 (preprint) | arXiv | MR
[11] Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Am. J. Math., Volume 125 (2003), pp. 1235-1293 | DOI | MR | Zbl
[12] Sharp global well-posedness for KdV and modified KdV on and , J. Am. Math. Soc., Volume 16 (2003) no. 3, pp. 705-749 | DOI | MR | Zbl
[13] The asymptotic stability of solitons in the cubic NLS equation on the line, Appl. Anal., Volume 93 (2014) no. 4, pp. 791-822 | DOI | MR | Zbl
[14] Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics, vol. 3, New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI, 1999 (viii+273 pp.) | MR | Zbl
[15] A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. (2), Volume 137 (1993), pp. 295-368 | DOI | MR | Zbl
[16] Asymptotics for the Painlevé II equation, Commun. Pure Appl. Math., Volume 48 (1995) no. 3, pp. 277-337 | DOI | MR | Zbl
[17] Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space. Dedicated to the memory of Jürgen K. Moser, Commun. Pure Appl. Math., Volume 56 (2003), pp. 1029-1077 | DOI | MR | Zbl
[18] Long-time asymptotics for the NLS equation via dbar methods, 2008 (preprint) | arXiv
[19] Dispersive asymptotics for linear and integrable equations by the -steepest descent method (preprint) | arXiv | MR
[20] Classification of radial solutions of the focusing, energy-critical wave equation, Camb. J. Math., Volume 1 (2013) no. 1, pp. 75-144 | DOI | MR | Zbl
[21] Soliton resolution along a sequence of times for the focusing energy critical wave equation, Geom. Funct. Anal., Volume 27 (2017) no. 4, pp. 798-862 | DOI | MR
[22] Asymptotic stability of solitons for mKdV, Adv. Math., Volume 299 (2016), pp. 272-330 | DOI | MR
[23] Global well-posedness of Korteweg-de Vries equation in , J. Math. Pures Appl. (9), Volume 91 (2009) no. 6, pp. 583-597 | DOI | MR | Zbl
[24] Long time behavior of solutions to the mKdV, Commun. Partial Differ. Equ., Volume 41 (2016) no. 2, pp. 282-317 | DOI | MR
[25] Large time behavior of solutions for the modified Korteweg de Vries equation, Int. Math. Res. Not. (1999), pp. 395-418 | DOI | MR | Zbl
[26] On the modified Korteweg-de Vries equation, Math. Phys. Anal. Geom., Volume 4 (2001) no. 3, pp. 197-227 | DOI | MR | Zbl
[27] Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons, J. Phys. Soc. Jpn., Volume 33 (1972) no. 5, pp. 1456-1458 | DOI
[28] Soliton resolution for the derivative nonlinear Schrödinger equation, Commun. Math. Phys., Volume 363 (2018) no. 3, pp. 1003-1049 | DOI | MR
[29] Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993) no. 4, pp. 527-620 | DOI | MR | Zbl
[30] On the ill-posedness of some canonical dispersive equations, Duke Math. J., Volume 106 (2001), pp. 617-633 | DOI | MR | Zbl
[31] Low regularity conservation laws for integrable PDE, Geom. Funct. Anal., Volume 28 (2018) no. 4, pp. 1062-1090 | DOI | MR
[32] Well-posedness of the Cauchy problem for the Korteweg-de Vries equation at the critical regularity, Differ. Integral Equ., Volume 22 (2009) no. 5–6, pp. 447-464 | MR | Zbl
[33] Conserved energies for the cubic nonlinear Schrödinger equation in one dimension, Duke Math. J., Volume 167 (2018) no. 17, pp. 3207-3313 | DOI | MR
[34] Elements of Soliton Theory, Pure Appl. Math., Wiley, New York, 1980 | MR | Zbl
[35] Introduction to Nonlinear Dispersive Equations, Universitext, Springer, New York, 2015 (xiv+301 pp.) | MR | Zbl
[36] Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 1, pp. 217-265 | DOI | Numdam | MR
[37] Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity, Volume 18 (2005) no. 1, pp. 55-80 | DOI | MR | Zbl
[38] Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., Volume 157 (2001) no. 3, pp. 219-254 | DOI | MR | Zbl
[39] Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., Volume 231 (2002) no. 2, pp. 347-373 | DOI | MR | Zbl
[40] The steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying nonanalytic weights, Int. Math. Res. Pap. (2006) | MR | Zbl
[41] Large time asymptotics of solutions around solitary waves to the generalized Korteweg-de Vries equations, SIAM J. Math. Anal., Volume 32 (2001) no. 5, pp. 1050-1080 | DOI | MR | Zbl
[42] Asymptotic stability of solitary waves, Commun. Math. Phys., Volume 164 (1994) no. 2, pp. 305-349 | DOI | MR | Zbl
[43] Inverse Spectral Theory, Pure and Applied Mathematics, vol. 130, Academic Press, Inc., Boston, MA, 1987 (x+192 pp.) | MR | Zbl
[44] Long-time asymptotics for the massive Thirring model (preprint) | arXiv
[45] Sur quelques généralisations de l'équation de Korteweg-de Vries, J. Math. Pures Appl. (9), Volume 58 (1979) no. 1, pp. 21-61 | MR | Zbl
[46] Asymptotic Analysis of Soliton Problems. An Inverse Scattering Approach, Lecture Notes in Mathematics, vol. 1232, Springer-Verlag, Berlin, 1986 (viii+180 pp.) | MR | Zbl
[47] The modified Korteweg-de Vries equation, J. Phys. Soc. Jpn., Volume 34 (1973) no. 5, pp. 1289-1296 | DOI | MR
[48] Multi-pole solutions of the modified Korteweg-de Vries equation, J. Phys. Soc. Jpn., Volume 51 (1982) no. 6, pp. 2029-2035 | DOI | MR
[49] The Riemann-Hilbert problem and inverse scattering, SIAM J. Math. Anal., Volume 20 (1989) no. 4, pp. 966-986 | DOI | MR | Zbl
[50] -Sobolev space bijectivity of the scattering and inverse scattering transforms, Commun. Pure Appl. Math., Volume 51 (1998), pp. 697-731 | DOI | MR | Zbl
Cité par Sources :