@article{ASENS_2005_4_38_3_471_0, author = {Pappas, Georgios}, title = {Cubic structures and ideal class groups}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {471--503}, publisher = {Elsevier}, volume = {Ser. 4, 38}, number = {3}, year = {2005}, doi = {10.1016/j.ansens.2005.03.001}, mrnumber = {2166342}, zbl = {1135.11033}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.ansens.2005.03.001/} }
TY - JOUR AU - Pappas, Georgios TI - Cubic structures and ideal class groups JO - Annales scientifiques de l'École Normale Supérieure PY - 2005 SP - 471 EP - 503 VL - 38 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.ansens.2005.03.001/ DO - 10.1016/j.ansens.2005.03.001 LA - en ID - ASENS_2005_4_38_3_471_0 ER -
%0 Journal Article %A Pappas, Georgios %T Cubic structures and ideal class groups %J Annales scientifiques de l'École Normale Supérieure %D 2005 %P 471-503 %V 38 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.ansens.2005.03.001/ %R 10.1016/j.ansens.2005.03.001 %G en %F ASENS_2005_4_38_3_471_0
Pappas, Georgios. Cubic structures and ideal class groups. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 38 (2005) no. 3, pp. 471-503. doi : 10.1016/j.ansens.2005.03.001. http://archive.numdam.org/articles/10.1016/j.ansens.2005.03.001/
[1] Elliptic spectra, the Witten genus and the theorem of the cube, Invent. Math. 146 (3) (2001) 595-687. | MR | Zbl
, , ,[2] Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974) 235-272. | Numdam | MR | Zbl
,[3] Fonctions thêta et théorème du cube, Lecture Notes in Math., vol. 980, Springer, Berlin, 1983. | MR | Zbl
,[4] Irregular primes and cyclotomic invariants to 12 million, J. Symbolic Comput. 31 (1-2) (2001) 89-96. | MR | Zbl
, , , ,[5] Cubic structures, equivariant Euler characteristics and modular forms, math.NT/0309327.
, , ,[6] Groupes algébriques, Masson et Cie/North-Holland, Paris/Amsterdam, 1970. | MR | Zbl
, ,[7] Le déterminant de la cohomologie, in: Currents Trends in Arithmetical Algebraic Geometry, Contemp. Math., vol. 67, American Mathematical Society, Providence, RI, 1987. | MR | Zbl
,[8] Algebraic and étale K-theory, Trans. Amer. Math. Soc. 292 (1) (1985) 247-280. | MR | Zbl
, ,[9] Cube structures and intersection bundles, J. Pure Appl. Algebra 195 (1) (2005) 33-73. | MR | Zbl
,[10] Some remarks on conjectures about cyclotomic fields and K-groups of , Compositio Math. 81 (2) (1992) 223-236. | EuDML | Numdam | MR | Zbl
,[11] Champs algébriques, Ergeb. Math. Grenzg. (3), vol. 39, Springer, Berlin, 2000. | MR | Zbl
, ,[12] On the torsion in and , Duke Math. J. 45 (1) (1978) 101-129, with an addendum by C. Soulé, 131-132. | MR | Zbl
, ,[13] Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977) 33-186, (1978). | EuDML | Numdam | MR | Zbl
,[14] Class fields of Abelian extensions of , Invent. Math. 76 (2) (1984) 179-330. | EuDML | MR | Zbl
, ,[15] Pinceaux de variétés abéliennes, Astérisque, vol. 129, 1985, 266 pp. | Numdam | MR | Zbl
,[16] Galois modules and the theorem of the cube, Invent. Math. 133 (1) (1998) 193-225. | MR | Zbl
,[17] Modules over finite groups, Ann. of Math. 69 (1959) 700-712. | MR | Zbl
,[18] is the trivial group, Topology 39 (2) (2000) 267-281. | MR | Zbl
,[19] Perfect forms and the Vandiver conjecture, J. reine Angew. Math. 517 (1999) 209-221. | MR | Zbl
,[20] , Théorie des topos et cohomologie étale des schémas, Dirigé par Artin M., Grothendieck A., Verdier J.-L. Avec la collaboration de Bourbaki N., Deligne P., Saint-Donat B., Lecture Notes in Math., vols. 269, 270, 305, Springer, Berlin, 1972. | Zbl
[21] , Groupes de monodromie en géométrie algébrique. I, Dirigé par Grothendieck A. Avec la collaboration de Raynaud M., Rim D.S., Lecture Notes in Math., vol. 288, Springer, Berlin, 1972. | MR | Zbl
[22] Introduction to Cyclotomic Fields, Graduate Texts in Math., vol. 83, Springer, New York, 1982, xi+389 pp. | MR | Zbl
,[23] Principal homogeneous spaces and group scheme extensions, Trans. Amer. Math. Soc. 153 (1971) 181-189. | MR | Zbl
,Cité par Sources :