@article{ASENS_2006_4_39_6_921_0, author = {Li, Peter and Wang, Jiaping}, title = {Weighted {Poincar\'e} inequality and rigidity of complete manifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {921--982}, publisher = {Elsevier}, volume = {Ser. 4, 39}, number = {6}, year = {2006}, doi = {10.1016/j.ansens.2006.11.001}, mrnumber = {2316978}, zbl = {05149414}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.ansens.2006.11.001/} }
TY - JOUR AU - Li, Peter AU - Wang, Jiaping TI - Weighted Poincaré inequality and rigidity of complete manifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2006 SP - 921 EP - 982 VL - 39 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.ansens.2006.11.001/ DO - 10.1016/j.ansens.2006.11.001 LA - en ID - ASENS_2006_4_39_6_921_0 ER -
%0 Journal Article %A Li, Peter %A Wang, Jiaping %T Weighted Poincaré inequality and rigidity of complete manifolds %J Annales scientifiques de l'École Normale Supérieure %D 2006 %P 921-982 %V 39 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.ansens.2006.11.001/ %R 10.1016/j.ansens.2006.11.001 %G en %F ASENS_2006_4_39_6_921_0
Li, Peter; Wang, Jiaping. Weighted Poincaré inequality and rigidity of complete manifolds. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 39 (2006) no. 6, pp. 921-982. doi : 10.1016/j.ansens.2006.11.001. http://archive.numdam.org/articles/10.1016/j.ansens.2006.11.001/
[1] Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ, 1982. | MR | Zbl
,[2] Boundaries of zero scalar curvature in the ADS/CFT correspondence, Adv. Theor. Math. Phys. 3 (1999) 1769-1783. | MR | Zbl
, ,[3] The structure of stable minimal hypersurfaces in , Math. Res. Lett. 4 (1997) 637-644. | MR | Zbl
, , ,[4] Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975) 333-354. | MR | Zbl
, ,[5] The uncertainty principle and sharp Gårding inequalities, Comm. Pure Appl. Math. 34 (1981) 285-331. | MR | Zbl
, ,[6] Lower bounds for Schrödinger equations, in: Conference on Partial Differential Equations (Saint Jean de Monts, 1982), Conf. No. 7, Soc. Math. France, Paris, 1982, 7 pp. | Numdam | MR | Zbl
, ,[7] Lecture Notes on Geometric Analysis, Lecture Notes Series, vol. 6, Research Institute of Mathematics and Global Analysis Research Center, Seoul National University, Seoul, 1993. | MR | Zbl
,[8] Curvature and function theory on Riemannian manifolds, in: Surveys in Differential Geometry: Papers Dedicated to Atiyah, Bott, Hirzebruch, and Singer, vol. VII, International Press, Cambridge, 2000, pp. 375-432. | MR | Zbl
,[9] Complete surfaces with finite total curvature, J. Diff. Geom. 33 (1991) 139-168. | MR | Zbl
, ,[10] Harmonic functions and the structure of complete manifolds, J. Diff. Geom. 35 (1992) 359-383. | MR | Zbl
, ,[11] Complete manifolds with positive spectrum, J. Diff. Geom. 58 (2001) 501-534. | MR | Zbl
, ,[12] Complete manifolds with positive spectrum, II, J. Diff. Geom. 62 (2002) 143-162. | MR | Zbl
, ,[13] Comparison theorem for Kähler manifolds and positivity of spectrum, J. Diff. Geom. 69 (2005) 43-74. | MR | Zbl
, ,[14] On Evans potential, Proc. Japan Acad. 38 (1962) 624-629. | MR | Zbl
,[15] Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems, Geom. Funct. Anal. 5 (1995) 809-851. | MR | Zbl
, ,[16] Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comm. Math. Helv. 39 (1981) 333-341. | MR | Zbl
, ,[17] Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988) 47-71. | MR | Zbl
, ,[18] Potential theory and diffusion on Riemannian manifolds, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund, vols. I, II, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 821-837. | MR | Zbl
,[19] On conformally compact Einstein manifolds, Math. Res. Lett. 8 (2001) 671-688. | MR | Zbl
,[20] Connectness of the boundary in the ADS.CFT correspondence, Adv. Theor. Math. Phys. 3 (1999) 1635-1655. | MR | Zbl
, ,[21] Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975) 201-228. | MR | Zbl
,[22] Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976) 659-670. | MR | Zbl
,Cited by Sources: