@article{ASENS_2007_4_40_4_633_0, author = {Liu, Tong}, title = {Torsion $p$-adic {Galois} representations and a conjecture of {Fontaine}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {633--674}, publisher = {Elsevier}, volume = {Ser. 4, 40}, number = {4}, year = {2007}, doi = {10.1016/j.ansens.2007.05.002}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.ansens.2007.05.002/} }
TY - JOUR AU - Liu, Tong TI - Torsion $p$-adic Galois representations and a conjecture of Fontaine JO - Annales scientifiques de l'École Normale Supérieure PY - 2007 SP - 633 EP - 674 VL - 40 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.ansens.2007.05.002/ DO - 10.1016/j.ansens.2007.05.002 LA - en ID - ASENS_2007_4_40_4_633_0 ER -
%0 Journal Article %A Liu, Tong %T Torsion $p$-adic Galois representations and a conjecture of Fontaine %J Annales scientifiques de l'École Normale Supérieure %D 2007 %P 633-674 %V 40 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.ansens.2007.05.002/ %R 10.1016/j.ansens.2007.05.002 %G en %F ASENS_2007_4_40_4_633_0
Liu, Tong. Torsion $p$-adic Galois representations and a conjecture of Fontaine. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 40 (2007) no. 4, pp. 633-674. doi : 10.1016/j.ansens.2007.05.002. http://archive.numdam.org/articles/10.1016/j.ansens.2007.05.002/
[1] Familles de représentations de de Rham et monodromie p-adique, Preprint, available at, http://www.ihes.fr/~lberger/.
, ,[2] Limites de représentations cristallines, Compos. Math. 140 (6) (2004) 1473-1498. | MR | Zbl
,[3] Finite flat commutative group schemes over complete discrete valuation rings iii: classification, tangent spaces, and semistable reduction of Abelian varieties, Preprint, available at, http://arxiv.org/abs/math/0412521.
,[4] Breuil C., Schémas en groupes et corps des normes, unpublished.
[5] Représentations p-adiques semi-stables et transversalité de Griffiths, Math. Ann. 307 (2) (1997) 191-224. | MR | Zbl
,[6] Une remarque sur les représentations locales p-adiques et les congruences entre formes modulaires de Hilbert, Bull. Soc. Math. France 127 (3) (1999) 459-472. | Numdam | MR | Zbl
,[7] Construction des représentations p-adiques semi-stables, Invent. Math. 140 (1) (2000) 1-43. | MR | Zbl
, ,[8] Représentations p-adiques des corps locaux. I, in: The Grothendieck Festschrift, vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 249-309. | MR | Zbl
,[9] Le corps des périodes p-adiques, Astérisque 223 (1994) 59-111. | Numdam | MR | Zbl
,[10] Représentations l-adiques potentiellement semi-stables, Astérisque 223 (1994) 321-347, Périodes p-adiques (Bures-sur-Yvette, 1988). | Numdam | MR | Zbl
,[11] Représentations p-adiques semi-stables, Astérisque 223 (1994) 113-184, With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988). | MR | Zbl
,[12] Deforming semistable Galois representations, Proc. Nat. Acad. Sci. USA 94 (21) (1997) 11138-11141, Elliptic curves and modular forms (Washington, DC, 1996). | MR | Zbl
,[13] Kisin M., Moduli of finite flat group schemes and modularity, Annals of Mathematics, in press.
[14] Crystalline representations and F-crystals, in: Algebraic Geometry and Number Theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 459-496. | MR
,[15] Kisin M., The Fontaine-Mazur conjecture for , Preprint, 2006.
[16] Kisin M., Potentially semi-stable deformation rings, J.A.M.S. (2006), in press.
[17] Kisin M., Modularity of 2-adic Barsotti-Tate representations, Preprint, 2007.
[18] Liu T., Lattices in semi-stable representations: proof of a conjecture of Breuil, Compositio Mathematica, in press. | Zbl
[19] Liu T., Potentially good reduction of Barsotti-Tate groups, J. Number Theory (2007), in press. | Zbl
[20] Deforming Galois representations, in: Galois groups over Q, Berkeley, CA, 1987, Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 385-437. | MR | Zbl
,[21] On a variation of Mazur's deformation functor, Compositio Math. 87 (3) (1993) 269-286. | Numdam | MR | Zbl
,[22] Schémas en groupes de type , Bull. Soc. Math. France 102 (1974) 241-280. | Numdam | MR | Zbl
,[23] A non-commutative Weierstrass preparation theorem and applications to Iwasawa theory, J. reine angew. Math. 559 (2003) 153-191, With an appendix by Denis Vogel. | MR | Zbl
,[24] Le corps des normes de certaines extensions infinies de corps locaux : applications, Ann. Sci. École Norm. Sup. (4) 16 (1) (1983) 59-89. | Numdam | MR | Zbl
,Cité par Sources :