In many diffusive settings, initial disturbances will gradually disappear and all but their crudest features — such as size and location — will eventually be forgotten. Quantifying the rate at which this information is lost is sometimes a question of central interest. Here this rate is addressed for the fastest conservative nonlinearities in the singular diffusion equation
Dans les milieux dissipatifs, les perturbations initiales disparaissent progressivement, et seuls sont preservés leurs traits les plus grossiers, comme leur taille et leur position. Estimer précisément la vitesse de cette « disparition » est parfois une question d'un interêt primordial. Ici, nous donnons cette vitesse pour les diffusions nonlinéaires les plus rapides qui préservent la masse, pour le modèle
Published online:
@article{CRMATH_2005__341_3_157_0, author = {Kim, Yong Jung and McCann, Robert J.}, title = {Sharp decay rates for the fastest conservative diffusions}, journal = {Comptes Rendus. Math\'ematique}, pages = {157--162}, publisher = {Elsevier}, volume = {341}, number = {3}, year = {2005}, doi = {10.1016/j.crma.2005.06.025}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2005.06.025/} }
TY - JOUR AU - Kim, Yong Jung AU - McCann, Robert J. TI - Sharp decay rates for the fastest conservative diffusions JO - Comptes Rendus. Mathématique PY - 2005 SP - 157 EP - 162 VL - 341 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2005.06.025/ DO - 10.1016/j.crma.2005.06.025 LA - en ID - CRMATH_2005__341_3_157_0 ER -
%0 Journal Article %A Kim, Yong Jung %A McCann, Robert J. %T Sharp decay rates for the fastest conservative diffusions %J Comptes Rendus. Mathématique %D 2005 %P 157-162 %V 341 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2005.06.025/ %R 10.1016/j.crma.2005.06.025 %G en %F CRMATH_2005__341_3_157_0
Kim, Yong Jung; McCann, Robert J. Sharp decay rates for the fastest conservative diffusions. Comptes Rendus. Mathématique, Volume 341 (2005) no. 3, pp. 157-162. doi : 10.1016/j.crma.2005.06.025. http://archive.numdam.org/articles/10.1016/j.crma.2005.06.025/
[1] Regularite des solutions de l'equation des milieux poreux dans , C. R. Acad. Sci. Paris Ser. A-B, Volume 288 (1979), p. A103-A105
[2] On some unsteady motions of a liquid or gas in a porous medium, Akad. Nauk SSSR Prikl. Mat. Mekh., Volume 16 (1952), pp. 67-78
[3] The continuous dependence on φ of solutions of , Indiana Univ. Math. J., Volume 30 (1981), pp. 161-177
[4] Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., Volume 133 (2001), pp. 1-82
[5] Fine asymptotics for fast diffusion equations, Comm. Partial Differential Equations, Volume 28 (2003), pp. 1023-1056
[6] Fast diffusion to self-similarity: complete spectrum, long time asymptotics, and numerology, Arch. Rational Mech. Anal., Volume 175 (2005), pp. 301-342
[7] Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl., Volume 81 (2002), pp. 847-875
[8] The asymptotic behaviour of a gas in an n-dimensional porous medium, Trans. Amer. Math. Soc., Volume 262 (1980), pp. 551-563
[9] Asymptotics of the fast-diffusion equation with critical exponent, SIAM J. Math. Anal., Volume 31 (2000), pp. 1157-1174
[10] The Cauchy problem for when , Trans. Amer. Math. Soc., Volume 291 (1985), pp. 145-158
[11] Potential theory and optimal convergences rates in fast nonlinear diffusion www.math.toronto.edu/~mccann (Preprint #23 at)
[12] Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, vol. 23, American Mathematical Society, Providence, RI, 1967 (Translated from the Russian by S. Smith)
[13] On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass, Comm. Partial Differential Equations, Volume 28 (2001), pp. 301-332
[14] Geometrical properties of solutions of the porous medium equation for large times, Indiana Univ. Math. J., Volume 52 (2003), pp. 991-1016
[15] The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial Differential Equations, Volume 26 (2001), pp. 101-174
[16] Diffusion from an instantaneous point source with concentration dependent coefficient, Quart. J. Mech. Appl. Math., Volume 12 (1959), pp. 407-409
[17] Uniqueness of the solutions of with measures as initial data, Nonlinear Anal., Volume 6 (1982), pp. 175-187
[18] An Introduction to the mathematical theory of the Porous Medium Equation, Shape Optimization and Free Boundaries (Montreal, PQ, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 380, Kluwer Academic, Dordrecht, 1992, pp. 347-389
[19] Asymptotic behaviour for the porous medium equation posed in the whole space, J. Evol. Equ., Volume 3 (2003), pp. 67-118
[20] Towards a theory of heat conduction with thermal conductivity depending on temperature, Collection of Papers dedicated to 70th Anniversary of A.F. Ioffe, Izd. Akad. Nauk SSSR, Moscow, 1950, pp. 61-72
Cited by Sources: